11 research outputs found

    Spatial and Temporal Evolution of Different‐Scale Ionospheric Irregularities in Central and East Siberia During the 27–28 May 2017 Geomagnetic Storm

    Get PDF
    We present a multi-instrumental study of ionospheric irregularities of different scales (from tens of centimeters to few kilometers) observed over the Central and East Siberia, Russia, during a moderate-to-strong geomagnetic storm on 27–28 May 2017. From high-frequency (HF) and ultrahigh-frequency (UHF) radar data, we observed an intense auroral backscatter developed right after the initial phase of the geomagnetic storm. Additionally, we examined variations of Global Positioning System (GPS)-based ROT (rate of TEC changes, where TEC is total electron content) for available GPS receivers in the region. Ionosondes, HF, and UHF radar data exhibited a presence of intense multi-scale ionospheric irregularities. We revealed a correlation between different-scale Auroral/Farley-Buneman ionospheric irregularities of the E layer during the geomagnetic storm. The combined analysis showed that an area of intense irregularities is well connected and located slightly equatorward to field-aligned currents (FACs) and auroral oval at different stages of the geomagnetic storm. An increase and equatorward displacement of Region 1 (R1)/Region 2 (R2) FACs leads to appearance and equatorward expansion of ionospheric irregularities. During downward (upward) R1 FAC and upward (downward) R2 FAC, the eastward and upward (westward and downward) E × B drift of ionospheric irregularities occurred. Simultaneous disappearance of UHF/HF auroral backscatter and GPS ROT decrease occurred during a prolonged near noon reversal of R1 and R2 FAC directions that accompanied by R1/R2 FAC degradation and disappearance of high-energy auroral precipitation

    Global electron content: a new conception to track solar activity

    No full text
    We developed a method and programs for estimation of the global electron content (GEC) from GPS measurements, using the ionosphere models IRI-2001 and NeQuick. During the 23rd cycle of solar activity, the value of GEC varied from 0.8 to 3.2×10<sup>32</sup> electrons, following changes in the solar extreme ultra violet (EUV) radiation and solar radio emission at 10.7-cm wavelength. We found a strong resemblance of these variations, with discernible 11-year and 27-day periodicities. A saturation effect of GEC is found when F10.7 increases. We found that GEC is characterized by strong seasonal (semiannual) variations with maximum relative amplitude at about 10% during the rising and falling parts of the solar activity and up to 30% during the period of maximum. It was found that the relative difference between model and experimental GEC series increase as the smoothing time window decreases. We found that GEC-IRI seasonal variations are out-of-phase with experimental GEC values. The lag between model and experimental maximum of GEC values can reach several tens of days. The variations of GEC lag, on average, 2 days after those of F10.7 and UV. GEC completely reflects the dynamics of the active regions on the solar surface. The amplitude of the 27-day GEC variations decreases from 8% at the rising and falling solar activity to 2% at the maximum and at the minimum. We also found that the lifetime of contrast long-living active formations on the Sun's surface in EUV range for more than 1 month exceeds the one in radio range (10.7 cm)

    Longitudinal extent of magnetospheric ELF/VLF waves using multipoint PWING ground stations at subauroral latitudes

    No full text
    Abstract Magnetospheric extremely low frequency/very low frequency (ELF/VLF) waves are plasma waves emitted from high‐energy electrons in the magnetosphere. These waves have received much attention, as they contribute to the acceleration and loss of relativistic electrons in the radiation belts through wave‐particle interactions. The longitudinal extent of ELF/VLF waves has not been well‐understood, although the extent is important in quantitative evaluation of relativistic electron variations. In this study, we analyzed data from continuous ground‐based simultaneous observations of ELF/VLF waves over a 2‐month period in November and December of 2017, using six loop antennas located at roughly equal intervals around the north geomagnetic pole at ∼60° magnetic latitudes. We estimated the longitudinal extent of magnetospheric ELF/VLF waves based on their occurrence rate. Our results showed that the ELF/VLF wave occurrence rate differed by twofold to threefold, depending on the longitudes of the observation sites. We explain this difference in terms of longitudinal differences in the ionosphere’s magnetic field intensity, possibly due to the electron loss that occurs during the bounce motion at longitudes of small magnetic field intensity. Based on our statistical analysis, we estimated the typical longitudinal extent of ELF/VLF waves as ∼76°. Time series analysis results showed that the large longitudinal extent of the ELF/VLF waves occurs frequently during the main phase of geomagnetic storms and is also associated with substorms represented by the auroral electrojet index

    Study of spatiotemporal development of global distribution of magnetospheric ELF/VLF waves using ground‐based and satellite observations, and RAM‐SCB simulations, for the March and November 2017 storms

    No full text
    Abstract Magnetospheric Extremely Low‐Frequency/Very Low‐Frequency (ELF/VLF) waves have an important role in the acceleration and loss of energetic electrons in the magnetosphere through wave‐particle interaction. It is necessary to understand the spatiotemporal development of magnetospheric ELF/VLF waves to quantitatively estimate this effect of wave‐particle interaction, a global process not yet well understood. We investigated spatiotemporal development of magnetospheric ELF/VLF waves using 6 PWING ground‐based stations at subauroral latitudes, Exploration of energization and Radiation in Geospace and RBSP satellites, POES/MetOp satellites, and the RAM‐SCB model, focusing on the March and November 2017 storms driven by corotating interaction regions in the solar wind. Our results show that the ELF/VLF waves are enhanced over a longitudinal extent from midnight to morning and dayside associated with substorm electron injections. In the main to early storm recovery phase, we observe continuous ELF/VLF waves from ∼0 to ∼12 MLT in the dawn sector. This wide extent seems to be caused by frequent occurrence of substorms. The wave region expands eastward in association with the drift of source electrons injected by substorms from the nightside. We also observed dayside ELF/VLF wave enhancement, possibly driven by magnetospheric compression by solar wind, over an MLT extent of at least 5 h. Ground observations tend not to observe ELF/VLF waves in the post‐midnight sector, although other methods clearly show the existence of waves. This is possibly due to Landau damping of the waves, the absence of the plasma density duct structure, and/or enhanced auroral ionization of the ionosphere in the post‐midnight sector

    A statistical study of longitudinal extent of Pc1 pulsations using seven PWING ground stations at subauroral latitudes

    No full text
    Abstract Pc1 geomagnetic pulsations correspond to electromagnetic ion cyclotron (EMIC) waves in the magnetosphere and are excited there with frequencies of 0.2–5 Hz. The instantaneous longitudinal extent of Pc1 waves on the ground has not been estimated yet. In this study, we analyze the Pc1 pulsations observed at seven longitudinally-distributed ground stations at subauroral latitudes at ∼60° magnetic latitude for 1 year from July 2018 to June 2019. The hourly occurrence rates of Pc1 pulsations at all 7 stations have a peak (14%–39.6%) in the post-noon sector and a local minimum (4.1%–8.1%) at midnight. The average frequencies become highest (0.6–1.1 Hz) after midnight and lowest (0.3–0.5 Hz) after noon at all 7 stations. An increasing tendency of total Pc1 occurrence with respect to magnetic latitude was observed. Based on these observations, we obtained a peak of probability distribution of the instantaneous Pc1 longitudinal extent as ∼82.5° with a half maximum at ∼114°, though this probability distribution can be affected by the limitation of the number of the stations. We also made model calculations on the possible longitudinal extent using artificial random Pc1 waves with fixed extents. The comparison of the model results with the observation suggests longitudinal extent of 70°–86° comparable to the peak of probability distribution (∼82.5°). A superposed epoch analysis shows that the longitudinal extent of Pc1 waves tends to increase during recovery phase of geomagnetic storms

    Ground-based instruments of the PWING project to investigate dynamics of the inner magnetosphere at subauroral latitudes as a part of the ERG-ground coordinated observation network

    Get PDF
    Abstract The plasmas (electrons and ions) in the inner magnetosphere have wide energy ranges from electron volts to mega-electron volts (MeV). These plasmas rotate around the Earth longitudinally due to the gradient and curvature of the geomagnetic field and by the co-rotation motion with timescales from several tens of hours to less than 10 min. They interact with plasma waves at frequencies of mHz to kHz mainly in the equatorial plane of the magnetosphere, obtain energies up to MeV, and are lost into the ionosphere. In order to provide the global distribution and quantitative evaluation of the dynamical variation of these plasmas and waves in the inner magnetosphere, the PWING project (study of dynamical variation of particles and waves in the inner magnetosphere using ground-based network observations, http://www.isee.nagoya-u.ac.jp/dimr/PWING/) has been carried out since April 2016. This paper describes the stations and instrumentation of the PWING project. We operate all-sky airglow/aurora imagers, 64-Hz sampling induction magnetometers, 40-kHz sampling loop antennas, and 64-Hz sampling riometers at eight stations at subauroral latitudes (~ 60° geomagnetic latitude) in the northern hemisphere, as well as 100-Hz sampling EMCCD cameras at three stations. These stations are distributed longitudinally in Canada, Iceland, Finland, Russia, and Alaska to obtain the longitudinal distribution of plasmas and waves in the inner magnetosphere. This PWING longitudinal network has been developed as a part of the ERG (Arase)-ground coordinated observation network. The ERG (Arase) satellite was launched on December 20, 2016, and has been in full operation since March 2017. We will combine these ground network observations with the ERG (Arase) satellite and global modeling studies. These comprehensive datasets will contribute to the investigation of dynamical variation of particles and waves in the inner magnetosphere, which is one of the most important research topics in recent space physics, and the outcome of our research will improve safe and secure use of geospace around the Earth
    corecore