245 research outputs found

    Bcl-2 protein family: Implications in vascular apoptosis and atherosclerosis

    Get PDF
    Apoptosis has been recognized as a central component in the pathogenesis of atherosclerosis, in addition to the other human pathologies such as cancer and diabetes. The pathophysiology of atherosclerosis is complex, involving both apoptosis and proliferation at different phases of its progression. Oxidative modification of lipids and inflammation differentially regulate the apoptotic and proliferative responses of vascular cells during progression of the atherosclerotic lesion. Bcl-2 proteins act as the major regulators of extrinsic and intrinsic apoptosis signalling pathways and more recently it has become evident that they mediate the apoptotic response of vascular cells in response to oxidation and inflammation either in a provocative or an inhibitory mode of action. Here we address Bcl-2 proteins as major therapeutic targets for the treatment of atherosclerosis and underscore the need for the novel preventive and therapeutic interventions against atherosclerosis, which should be designed in the light of molecular mechanisms regulating apoptosis of vascular cells in atherosclerotic lesions

    Shaping a screening file for maximal lead discovery efficiency and effectiveness: elimination of molecular redundancy

    Get PDF
    High Throughput Screening (HTS) is a successful strategy for finding hits and leads that have the opportunity to be converted into drugs. In this paper we highlight novel computational methods used to select compounds to build a new screening file at Pfizer and the analytical methods we used to assess their quality. We also introduce the novel concept of molecular redundancy to help decide on the density of compounds required in any region of chemical space in order to be confident of running successful HTS campaigns

    Bak Conformational Changes Induced by Ligand Binding: Insight into BH3 Domain Binding and Bak Homo-Oligomerization

    Get PDF
    Recently we reported that the BH3-only proteins Bim and Noxa bind tightly but transiently to the BH3-binding groove of Bak to initiate Bak homo-oligomerization. However, it is unclear how such tight binding can induce Bak homo-oligomerization. Here we report the ligand-induced Bak conformational changes observed in 3D models of Noxa·Bak and Bim·Bak refined by molecular dynamics simulations. In particular, upon binding to the BH3-binding groove, Bim and Noxa induce a large conformational change of the loop between helices 1 and 2 and in turn partially expose a remote groove between helices 1 and 6 in Bak. These observations, coupled with the reported experimental data, suggest formation of a pore-forming Bak octamer, in which the BH3-binding groove is at the interface on one side of each monomer and the groove between helices 1 and 6 is at the interface on the opposite side, initiated by ligand binding to the BH3-binding groove

    Modern NMR spectroscopy of proteins and peptides in solution and its relevance to drug design

    Full text link
    The knowledge of the three-dimensional (3D) structures and conformational dynamics of proteins and peptides is important for the understanding of biochemical and genetic data derived for these molecules. This understanding can ultimately be of help in drug design. We describe here the role of Nuclear Magnetic Resonance (NMR) spectroscopy in this process for three distinct situations: for small proteins, where relatively simple NMR methods can be used for full 3D structure determination; for larger proteins that require multinuclear multidimensional NMR but for which full 3D structures can still be obtained; and for small peptides that are studied in interaction with macromolecules (receptors) using specialized NMR techniques. A fourth situation, pertaining to large systems where only partial structural information can be obtained from NMR data, is briefly discussed. Molecules of interest to the biomedical field (C5a and stromelysin) are discussed as examples.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43356/1/11091_2005_Article_BF02174537.pd

    Molecular Characterization of Monocyte Subsets Reveals Specific and Distinctive Molecular Signatures Associated With Cardiovascular Disease in Rheumatoid Arthritis

    Get PDF
    Objectives: This study, developed within the Innovative Medicines Initiative Joint Undertaking project PRECISESADS framework, aimed at functionally characterize the monocyte subsets in RA patients, and analyze their involvement in the increased CV risk associated with RA.Methods: The frequencies of monocyte subpopulations in the peripheral blood of 140 RA patients and 145 healthy donors (HDs) included in the PRECISESADS study were determined by flow cytometry. A second cohort of 50 RA patients and 30 HDs was included, of which CD14+ and CD16+ monocyte subpopulations were isolated using immuno-magnetic selection. Their transcriptomic profiles (mRNA and microRNA), proinflammatory patterns and activated pathways were evaluated and related to clinical features and CV risk. Mechanistic in vitro analyses were further performed.Results: CD14++CD16+ intermediate monocytes were extended in both cohorts of RA patients. Their increased frequency was associated with the positivity for autoantibodies, disease duration, inflammation, endothelial dysfunction and the presence of atheroma plaques, as well as with the CV risk score. CD14+ and CD16+ monocyte subsets showed distinctive and specific mRNA and microRNA profiles, along with specific intracellular signaling activation, indicating different functionalities. Moreover, that specific molecular profiles were interrelated and associated to atherosclerosis development and increased CV risk in RA patients. In vitro, RA serum promoted differentiation of CD14+CD16− to CD14++CD16+ monocytes. Co-culture with RA-isolated monocyte subsets induced differential activation of endothelial cells.Conclusions: Our overall data suggest that the generation of inflammatory monocytes is associated to the autoimmune/inflammatory response that mediates RA. These monocyte subsets, -which display specific and distinctive molecular signatures- might promote endothelial dysfunction and in turn, the progression of atherosclerosis through a finely regulated process driving CVD development in RA

    Cell death during sepsis: integration of disintegration in the inflammatory response to overwhelming infection

    Full text link
    Sepsis is a major health problem and a leading cause of death worldwide. In recent years, a crescendo of attention has been directed to the mechanisms of cell death that develop during this disease, since these are viewed as important contributors to the proinflammatory and anti-inflammatory responses associated with poor outcome. Here we discuss mechanisms of cell death evident severe bacterial infection and sepsis including necrosis, apoptosis, pyroptosis, and extracellular trap-associated neutrophil death, with a particular emphasis on lymphocyte apoptosis and its contribution to the immunosuppressed phenotype of late sepsis. Individual bacterial pathogens express virulence factors that modulate cell death pathways and influence the sepsis phenotype. A greater knowledge of cell death pathways in sepsis informs the potential for future therapies designed to ameliorate immune dysfunction in this syndrome

    Pharmaceutical Particle Engineering via Spray Drying

    Full text link
    corecore