62,360 research outputs found

    Optimizing the catching of atoms or molecules in two-dimensional traps

    Get PDF
    Single-photon cooling is a recently introduced method to cool atoms and molecules for which standard methods might not be applicable. We numerically examine this method in a two-dimensional wedge trap as well as in a two-dimensional harmonic trap. An element of the method is an optical dipole box trapping atoms irreversibly. We show that the cooling efficiency of the single-photon method can be improved by optimizing the trajectory of this optical dipole box.Comment: 8 pages, 11 figures, improved version with corrected typos et

    Spin waves in the (0,pi) and (0,pi,pi) ordered SDW states of the t-t' Hubbard model: Application to doped iron pnictides

    Full text link
    Spin waves in (0,pi) and (0,pi,pi) ordered spin-density-wave (SDW) states of the t-t' Hubbard model are investigated at finite doping. In the presence of small t', these composite ferro-antiferromagnetic (F-AF) states are found to be strongly stabilized at finite hole doping due to enhanced carrier-induced ferromagnetic spin couplings as in metallic ferromagnets. Anisotropic spin-wave velocities, spin-wave energy scale of around 200meV, reduced magnetic moment, and rapid suppression of magnetic order with electron doping x (corresponding to F substitution of O atoms in La O_{1-x} F_x Fe As or Ni substitution of Fe atoms in Ba Fe_{2-x} Ni_x As_2) obtained in this model are in agreement with observed magnetic properties of doped iron pnictides.Comment: 13 pages, 3 figure

    RTP control protocol (RTCP) extended report (XR) block for independent reporting of burst/fgp discard metrics

    Get PDF
    This document defines an RTP Control Protocol (RTCP) Extended Report (XR) block that allows the reporting of burst/gap discard metrics independently of the burst/gap loss metrics for use in a range of RTP applications

    The Band Gap in Silicon Nanocrystallites

    Full text link
    The gap in semiconductor nanocrystallites has been extensively studied both theoretically and experimentally over the last two decades. We have compared a recent ``state-of-the-art'' theoretical calculation with a recent ``state-of-the-art'' experimental observation of the gap in Si nanocrystallite. We find that the two are in substantial disagreement, with the disagreement being more pronounced at smaller sizes. Theoretical calculations appear to over-estimate the gap. Recognizing that the experimental observations are for a distribution of crystallite sizes, we proffer a phenomenological model to reconcile the theory with the experiment. We suggest that similar considerations must dictate comparisons between the theory and experiment vis-a-vis other properties such as radiative rate, decay constant, absorption coefficient, etc.Comment: 5 pages, latex, 2 figures. (Submitted Physical Review B

    Observation of tunable exchange bias in Sr2_2YbRuO6_6

    Full text link
    The double perovskite compound, Sr2_{2}YbRuO6_{6}, displays reversal in the orientation of magnetic moments along with negative magnetization due to an underlying magnetic compensation phenomenon. The exchange bias (EB) field below the compensation temperature could be the usual negative or the positive depending on the initial cooling field. This EB attribute has the potential of getting tuned in a preselected manner, as the positive EB field is seen to crossover from positive to negative value above TcompT_{\mathrm{comp}}.Comment: 4 Pages, 4 Figure
    corecore