182 research outputs found

    SH-wave seismic reflection at a landslide (Patigno, NW Italy) integrated with P-wave

    Get PDF
    The aim of this paper is to present the acquisition and processing up to the depth migrated section of an SH-wave reflection seismic profile. This experience is conducted on a deep-seated gravitational slope deformation located in the Northern Apennines in Italy. The SH-wave depth-migrated image in the investigated area provides a detailed description of the small reactivation slip surfaces delineating minor landslides at shallow depths, which are responsible for the major damages observed. These results are integrated with a recently acquired P-wave seismic reflection profile investigating the same slope and delineating the highly deformed layer at depth, liable for the deep-seated gravitational slope deformation. The combined use of P-waves and SH-waves allows to gain a deeper knowledge of the landslide internal setting that is necessary to mitigate the risk associated with the mass movement

    High-resolution coherency functionals for improving the velocity analysis of ground-penetrating radar data

    Get PDF
    We aim at verifying whether the use of high-resolution coherency functionals could improve the signal-to-noise ratio (S/N) of Ground-Penetrating Radar data by introducing a variable and precisely picked velocity field in the migration process. After carrying out tests on synthetic data to schematically simulate the problem, assessing the types of functionals most suitable for GPR data analysis, we estimated a varying velocity field relative to a real dataset. This dataset was acquired in an archaeological area where an excavation after a GPR survey made it possible to define the position, type, and composition of the detected targets. Two functionals, the Complex Matched Coherency Measure and the Complex Matched Analysis, turned out to be effective in computing coherency maps characterized by high-resolution and strong noise rejection, where velocity picking can be done with high precision. By using the 2D velocity field thus obtained, migration algorithms performed better than in the case of constant or 1D velocity field, with satisfactory collapsing of the diffracted events and moving of the reflected energy in the correct position. The varying velocity field was estimated on different lines and used to migrate all the GPR profiles composing the survey covering the entire archaeological area. The time slices built with the migrated profiles resulted in a higher S/N than those obtained from non-migrated or migrated at constant velocity GPR profiles. The improvements are inherent to the resolution, continuity, and energy content of linear reflective areas. On the basis of our experience, we can state that the use of high-resolution coherency functionals leads to migrated GPR profiles with a high-grade of hyperbolas focusing. These profiles favor better imaging of the targets of interest, thereby allowing for a more reliable interpretation

    SH-wave reflection seismic survey at the Patigno landslide: integration with a previously acquired P-wave seismic profile

    Get PDF
    Seismic investigation on landslide is hampered by several factors that could prevent the use of the reflection seismic method to characterize the subsurface architecture (Jongmans and Garambois, 2007). Moreover, acquisition and processing of reflection seismic data are more time consuming compared with other geophysical techniques such as refraction seismic and electrical resistivity tomography (ERT), leading inevitably to higher costs. Notwithstanding these difficulties, recently some attempts to delineate the deep slip surface of large landslides have been carried out using P-wave reflection seismic surveys (Apuani et al., 2012; Stucchi and Mazzotti, 2009; Stucchi et al., 2014;). P-wave reflection seismic method is effective in imaging the slip surface at a depth sufficiently greater than the seismic wavelength, whereas, for very shallow horizons, it suffers from the limited resolution that can be obtained by the use of compressional waves. In this regards, SH-waves can be used to overcome this limitation (Deidda and Balia, 2001; Guy, 2006; Pugin et al., 2006,), but they require a specifically-designed energy source for waves generation, geophones measuring horizontal components of particles motion and an accurate choice of acquisition parameters. On the contrary, due to attenuation, the depth of investigation for SHwaves can be lower than for P-waves (Pugin et al., 2006). Therefore the geological understanding of a mass movement can take advantage of a combined use of both these geophysical methodologies. This is the case of the Patigno landslide, a great landslide located in the upper basin of Magra River, in the Northern Appennines, Italy (Fig.1), where a P-wave study carried out in the last years (Stucchi et al., 2014) was able to image the deepest discontinuity of the landslide body at around 40-50 m depth, but no description of the shallower layers can be inferred. Because these surface layers are the slip surfaces of quick reactivation movements of the landslide, an SH high-resolution reflection seismic survey was planned along the previous P-wave profile (Fig.1). This new survey associated to the P-wave investigation allows a more robust description of the landslide body, from the deepest discontinuity up to the very shallow portions of the landslide. This work describes the planning, acquisition and processing of the SH reflection seismic survey, and also gives a possible combined interpretation of both P and SH seismic images

    High-resolution coherency functionals for velocity analysis: an application for subbasalt seismic exploration

    Get PDF
    We tested the properties of three different coherency functionals for the velocity analysis of seismic data relative to subbasalt exploration. We evaluated the performance of the standard semblance algorithm and two high-resolution coherency functionals based on the use of analytic signals and of the covariance estimation along hyperbolic traveltime trajectories. Approximate knowledge of the wavelet was exploited to design appropriate filters that matched the primary reflections, thereby further improving the ability of the functionals to highlight the events of interest. The tests were carried out on two synthetic seismograms computed on models reproducing the geologic setting of basaltic intrusions and on common midpoint gathers from a 3D survey. Synthetic and field data had a very low signal-to-noise ratio, strong multiple contamination, and weak primary subbasalt signals. The results revealed that high-resolution coherency functionals were more suitable than semblance algorithms to detect primary signals and to distinguish them from multiples and other interfering events. This early discrimination between primaries and multiples could help to target specific signal enhancement and demultiple operations

    Immune Evasion by Herpes Simplex Viruses

    Get PDF
    Infection with herpes simplex viruses type 1 (HSV-1) and type 2 (HSV-2) is extremely frequent in the human population, as well as recurrent reactivations due to lifelong infection. Infection and persistence of HSVs within healthy individuals likely results as a consequence of numerous molecular determinants evolved by these pathogens to escape both immediate and long-term host antiviral mechanisms. Indeed, HSVs harbor an arsenal of proteins that confer them stealth by negatively modulating immune function. Consequently, these viruses perpetuate within the host, altogether silently shedding onto other individuals. In this chapter, we discuss HSV determinants that interfere with cellular antiviral factors, as well as viral determinants that hamper innate and adaptive immune components intended to control such microbes. The identification of HSV evasion molecules that modulate the immune system, as well as the understanding of their mechanisms of action, should facilitate the design of novel prophylactic and therapeutic strategies to overcome infection and disease elicited by these viruses. This chapter is intended to provide an overview of the evasion mechanisms evolved by herpes simplex viruses to escape numerous host antiviral mediators

    Ultrafiltration in the treatment of refractory congestive heart failure.

    Get PDF
    Artificial subtraction of fluids and solutes was evaluated in the course of acute and chronic heart failure when it became refractory to standard intensive medical treatment. A group of 19 patients (mean age 57 years), 9 with ischemic, 2 amyloidotic, 4 valvular, and 4 idiopathic cardiomyopathy, were treated. In 17 patients extracorporeal ultrafiltration (UF) by means of a polysulfonate ultrafilter was adopted along 125 sessions (105 assisted by a roller pump and 20 as a slow continuous ultrafiltrate). In two patients continuous peritoneal dialysis was adopted. In every case UF was well tolerated. Ultrafiltrate volumes ranged from 1680 to 3500 ml for every session with corresponding Na losses ranging from 194 to 434 mEq/session. Improved clinical and functional status with reduction of edema was observed in 17 of 19 patients. In 12 patients UF could be discontinued due to restored response to diuretics; 5 of these patients could subsequently undergo heart surgery (1 transplant, 3 valve replacement, 1 coronary bypass). The remaining 7 patients survived on medical therapy alone for an average of 228 days. In 7 of 19 cases, UF could not be discontinued, and these patients died after an average of 23 days of treatment. In conclusion, UF proved to be effective in eliminating salt-fluid overload and restoring response to medical treatment. Patients who are potential surgical candidates seem to be the most suitable for UF

    Immune-Modulation by the Human Respiratory Syncytial Virus: Focus on Dendritic Cells

    Get PDF
    The human respiratory syncytial virus (hRSV) is the leading cause of pneumonia in infants and produces a significant burden in the elderly. It can also infect and produce disease in otherwise healthy adults and recurrently infect those previously exposed to the virus. Importantly, recurrent infections are not necessarily a consequence of antigenic variability, as described for other respiratory viruses, but most likely due to the capacity of this virus to interfere with the host's immune response and the establishment of a protective and long-lasting immunity. Although some genes encoded by hRSV are known to have a direct participation in immune evasion, it seems that repeated infection is mainly given by its capacity to modulate immune components in such a way to promote non-optimal antiviral responses in the host. Importantly, hRSV is known to interfere with dendritic cell (DC) function, which are key cells involved in establishing and regulating protective virus-specific immunity. Notably, hRSV infects DCs, alters their maturation, migration to lymph nodes and their capacity to activate virus-specific T cells, which likely impacts the host antiviral response against this virus. Here, we review and discuss the most important and recent findings related to DC modulation by hRSV, which might be at the basis of recurrent infections in previously infected individuals and hRSV-induced disease. A focus on the interaction between DCs and hRSV will likely contribute to the development of effective prophylactic and antiviral strategies against this virus

    Using Model Test Data to Assess VIV Factor of Safety for SCR and TTR in GOM

    Get PDF
    This paper presents results obtained as part of the DeepStar Phase 10 program on VIV Factors of Safety. The objective was to develop a general methodology to calibrate Factors of Safety for VIV-induced fatigue and to apply it to partially straked risers. This was achieved using reliability methods, accepted industry VIV prediction software and state-of-the-art model test experiments. Most oil companies use a Factor of Safety of 20 when predicting VIV damage using VIV software tools. There are numerous software tools currently in use in industry to predict VIV damage to straked risers and each of them will have different accuracy, and therefore an intrinsic level of conservatism. Understanding the level of conservatism in different VIV prediction software is therefore critical to determining what Factor of Safety to use. This study benchmarks the latest generation of industry accepted VIV design tools at the time of the study (2011): SHEAR7v4.6, VIVAv6.5 and VIVANAv3.7.24 against high quality VIV data from three separate straked riser experiments. A bias distribution (predicted to measured VIV damage results) is obtained for each software tool as a function of the strake coverage. A novel reliability framework approach is then developed to incorporate all uncertainties associated with VIV fatigue prediction into a limit state function, including variability in met-ocean conditions and variability in the fatigue resistance of the material characterized by a design S-N curve. The limit state function is analyzed using First Order Reliability Methods to develop Factors of Safety for target probabilities of failure. The general method is then applied on two case studies involving an SCR and TTR in Gulf of Mexico loop currents, but it can be easily extended to different locations and riser configurations. The resulting FoS range from about 1 to 15 for most software, and are lower than industry standards for VIV prediction. The FoS do not vary markedly for different riser configurations, indicating the possibility of reducing excess conservatism when predicting VIV damage on straked risers.DeepStar (Consortium)SHEAR7 JI
    • …
    corecore