222 research outputs found

    Characterization of fluorescence collection optics integrated with a micro-fabricated surface electrode ion trap

    Full text link
    One of the outstanding challenges for ion trap quantum information processing is to accurately detect the states of many ions in a scalable fashion. In the particular case of surface traps, geometric constraints make imaging perpendicular to the surface appealing for light collection at multiple locations with minimal cross-talk. In this report we describe an experiment integrating Diffractive Optic Elements (DOE's) with surface electrode traps, connected through in-vacuum multi-mode fibers. The square DOE's reported here were all designed with solid angle collection efficiencies of 3.58%; with all losses included a detection efficiency of 0.388% (1.02% excluding the PMT loss) was measured with a single Ca+ ion. The presence of the DOE had minimal effect on the stability of the ion, both in temporal variation of stray electric fields and in motional heating rates.Comment: 6 pages, 8 figure

    Clustering as an integration pattern of business activity

    Get PDF
    The article deals with the analysis of business activity of companies and suggests the clustering as a key integration pattern of the central and peripheral region areas. Prerequisites of clustering formation and development are considered in the article. Moreover, the authors stressed that clustering increases the investment prospects of both the industry and the region.peer-reviewe

    Should We Learn Probabilistic Models for Model Checking? A New Approach and An Empirical Study

    Get PDF
    Many automated system analysis techniques (e.g., model checking, model-based testing) rely on first obtaining a model of the system under analysis. System modeling is often done manually, which is often considered as a hindrance to adopt model-based system analysis and development techniques. To overcome this problem, researchers have proposed to automatically "learn" models based on sample system executions and shown that the learned models can be useful sometimes. There are however many questions to be answered. For instance, how much shall we generalize from the observed samples and how fast would learning converge? Or, would the analysis result based on the learned model be more accurate than the estimation we could have obtained by sampling many system executions within the same amount of time? In this work, we investigate existing algorithms for learning probabilistic models for model checking, propose an evolution-based approach for better controlling the degree of generalization and conduct an empirical study in order to answer the questions. One of our findings is that the effectiveness of learning may sometimes be limited.Comment: 15 pages, plus 2 reference pages, accepted by FASE 2017 in ETAP

    Brzozowski Algorithm Is Generically Super-Polynomial Deterministic Automata

    Get PDF
    International audienceWe study the number of states of the minimal automaton of the mirror of a rational language recognized by a random deterministic automaton with n states. We prove that, for any d > 0, the probability that this number of states is greater than nd tends to 1 as n tends to infinity. As a consequence, the generic and average complexities of Brzozowski minimization algorithm are super-polynomial for the uniform distribution on deterministic automata

    Advanced Automata Minimization

    Get PDF
    We present an efficient algorithm to reduce the size of nondeterministic Buchi word automata, while retaining their language. Additionally, we describe methods to solve PSPACE-complete automata problems like universality, equivalence and inclusion for much larger instances (1-3 orders of magnitude) than before. This can be used to scale up applications of automata in formal verification tools and decision procedures for logical theories. The algorithm is based on new transition pruning techniques. These use criteria based on combinations of backward and forward trace inclusions. Since these relations are themselves PSPACE-complete, we describe methods to compute good approximations of them in polynomial time. Extensive experiments show that the average-case complexity of our algorithm scales quadratically. The size reduction of the automata depends very much on the class of instances, but our algorithm consistently outperforms all previous techniques by a wide margin. We tested our algorithm on Buchi automata derived from LTL-formulae, many classes of random automata and automata derived from mutual exclusion protocols, and compared its performance to the well-known automata tool GOAL.Comment: 15 page

    Antichain Algorithms for Finite Automata

    Get PDF
    We present a general theory that exploits simulation relations on transition systems to obtain antichain algorithms for solving the reachability and repeated reachability problems. Antichains are more succinct than the sets of states manipulated by the traditional fixpoint algorithms. The theory justifies the correctness of the antichain algorithms, and applications such as the universality problem for finite automata illustrate efficiency improvements. Finally, we show that new and provably better antichain algorithms can be obtained for the emptiness problem of alternating automata over finite and infinite words

    How to Tackle Integer Weighted Automata Positivity

    Get PDF
    International audienceThis paper is dedicated to candidate abstractions to capture relevant aspects of the integer weighted automata. The expected effect of applying these abstractions is studied to build the deterministic reachability graphs allowing us to semi-decide the positivity problem on these automata. Moreover, the papers reports on the implementations and experimental results, and discusses other encodings

    Thyroglossal duct cyst carcinoma

    Get PDF
    Not required for Clinical Vignette
    corecore