1,168 research outputs found

    First principles-based multiparadigm, multiscale strategy for simulating complex materials processes with applications to amorphous SiC films

    Get PDF
    Progress has recently been made in developing reactive force fields to describe chemical reactions in systems too large for quantum mechanical (QM) methods. In particular, ReaxFF, a force field with parameters that are obtained solely from fitting QM reaction data, has been used to predict structures and properties of many materials. Important applications require, however, determination of the final structures produced by such complex processes as chemical vapor deposition, atomic layer deposition, and formation of ceramic films by pyrolysis of polymers. This requires the force field to properly describe the formation of other products of the process, in addition to yielding the final structure of the material. We describe a strategy for accomplishing this and present an example of its use for forming amorphous SiC films that have a wide variety of applications. Extensive reactive molecular dynamics (MD) simulations have been carried out to simulate the pyrolysis of hydridopolycarbosilane. The reaction products all agree with the experimental data. After removing the reaction products, the system is cooled down to room temperature at which it produces amorphous SiC film, for which the computed radial distribution function, x-ray diffraction pattern, and the equation of state describing the three main SiC polytypes agree with the data and with the QM calculations. Extensive MD simulations have also been carried out to compute other structural properties, as well the effective diffusivities of light gases in the amorphous SiC film

    Effects of prenatal exposure to diesel exhaust particles on postnatal development, behavior, genotoxicity and inflammation in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Results from epidemiological studies indicate that particulate air pollution constitutes a hazard for human health. Recent studies suggest that diesel exhaust possesses endocrine activity and therefore may affect reproductive outcome. This study in mice aimed to investigate whether exposure to diesel exhaust particles (DEP; NIST 2975) would affect gestation, postnatal development, activity, learning and memory, and biomarkers of transplacental toxicity. Pregnant mice (C57BL/6; BomTac) were exposed to 19 mg/m<sup>3 </sup>DEP (~1·10<sup>6 </sup>particles/cm<sup>3</sup>; mass median diameter ≅ 240 nm) on gestational days 9–19, for 1 h/day.</p> <p>Results</p> <p>Gestational parameters were similar in control and diesel groups. Shortly after birth, body weights of DEP offspring were slightly lower than in controls. This difference increased during lactation, so by weaning the DEP exposed offspring weighed significantly less than the control progeny. Only slight effects of exposure were observed on cognitive function in female DEP offspring and on biomarkers of exposure to particles or genotoxic substances.</p> <p>Conclusion</p> <p>In utero exposure to DEP decreased weight gain during lactation. Cognitive function and levels of biomarkers of exposure to particles or to genotoxic substances were generally similar in exposed and control offspring. The particle size and chemical composition of the DEP and differences in exposure methods (fresh, whole exhaust versus aged, resuspended DEP) may play a significant role on the biological effects observed in this compared to other studies.</p

    Application of semidefinite programming to maximize the spectral gap produced by node removal

    Full text link
    The smallest positive eigenvalue of the Laplacian of a network is called the spectral gap and characterizes various dynamics on networks. We propose mathematical programming methods to maximize the spectral gap of a given network by removing a fixed number of nodes. We formulate relaxed versions of the original problem using semidefinite programming and apply them to example networks.Comment: 1 figure. Short paper presented in CompleNet, Berlin, March 13-15 (2013

    Modest effect on plaque progression and vasodilatory function in atherosclerosis-prone mice exposed to nanosized TiO2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is growing evidence that exposure to small size particulate matter increases the risk of developing cardiovascular disease.</p> <p>Methods</p> <p>We investigated plaque progression and vasodilatory function in apolipoprotein E knockout (<it>ApoE</it><sup>-/-</sup>) mice exposed to TiO<sub>2</sub>. <it>ApoE</it><sup>-/- </sup>mice were intratracheally instilled (0.5 mg/kg bodyweight) with rutile fine TiO<sub>2 </sub>(fTiO<sub>2</sub>, 288 nm), photocatalytic 92/8 anatase/rutile TiO<sub>2 </sub>(pTiO<sub>2</sub>, 12 nm), or rutile nano TiO<sub>2 </sub>(nTiO<sub>2</sub>, 21.6 nm) at 26 and 2 hours before measurement of vasodilatory function in aorta segments mounted in myographs. The progression of atherosclerotic plaques in aorta was assessed in mice exposed to nanosized TiO<sub>2 </sub>(0.5 mg/kg bodyweight) once a week for 4 weeks. We measured mRNA levels of <it>Mcp-1</it>, <it>Mip-2</it>, <it>Vcam-1</it>, <it>Icam-1 </it>and <it>Vegf </it>in lung tissue to assess pulmonary inflammation and vascular function. TiO<sub>2</sub>-induced alterations in nitric oxide (NO) production were assessed in human umbilical vein endothelial cells (HUVECs).</p> <p>Results</p> <p>The exposure to nTiO<sub>2 </sub>was associated with a modest increase in plaque progression in aorta, whereas there were unaltered vasodilatory function and expression levels of <it>Mcp-1</it>, <it>Mip-2</it>, <it>Vcam-1</it>, <it>Icam-1 </it>and <it>Vegf </it>in lung tissue. The <it>ApoE<sup>-/- </sup></it>mice exposed to fine and photocatalytic TiO<sub>2 </sub>had unaltered vasodilatory function and lung tissue inflammatory gene expression. The unaltered NO-dependent vasodilatory function was supported by observations in HUVECs where the NO production was only increased by exposure to nTiO<sub>2</sub>.</p> <p>Conclusion</p> <p>Repeated exposure to nanosized TiO<sub>2 </sub>particles was associated with modest plaque progression in <it>ApoE<sup>-/- </sup></it>mice. There were no associations between the pulmonary TiO<sub>2 </sub>exposure and inflammation or vasodilatory dysfunction.</p

    Rendezvous on a Line by Location-Aware Robots Despite the Presence of Byzantine Faults

    Full text link
    A set of mobile robots is placed at points of an infinite line. The robots are equipped with GPS devices and they may communicate their positions on the line to a central authority. The collection contains an unknown subset of "spies", i.e., byzantine robots, which are indistinguishable from the non-faulty ones. The set of the non-faulty robots need to rendezvous in the shortest possible time in order to perform some task, while the byzantine robots may try to delay their rendezvous for as long as possible. The problem facing a central authority is to determine trajectories for all robots so as to minimize the time until the non-faulty robots have rendezvoused. The trajectories must be determined without knowledge of which robots are faulty. Our goal is to minimize the competitive ratio between the time required to achieve the first rendezvous of the non-faulty robots and the time required for such a rendezvous to occur under the assumption that the faulty robots are known at the start. We provide a bounded competitive ratio algorithm, where the central authority is informed only of the set of initial robot positions, without knowing which ones or how many of them are faulty. When an upper bound on the number of byzantine robots is known to the central authority, we provide algorithms with better competitive ratios. In some instances we are able to show these algorithms are optimal

    Evaluation of Galanin Expression in Colorectal Cancer: An Immunohistochemical and Transcriptomic Study

    Get PDF
    Colorectal cancer (CRC) represents around 10% of all cancers, with an increasing incidence in the younger age group. The gut is considered a unique organ with its distinctive neuronal supply. The neuropeptide, human galanin, is widely distributed in the colon and expressed in many cancers, including the CRC. The current study aimed to explore the role of galanin at different stages of CRC. Eighty-one CRC cases (TNM stages I – IV) were recruited, and formalin-fixed paraffin-embedded samples were analyzed for the expression of galanin and galanin receptor 1 (GALR1) by immunohistochemistry (IHC). Galanin intensity was significantly lower in stage IV (n= 6) in comparison to other stages (p= 0.037 using the Mann-Whitney U test). Whole transcriptomics analysis using NGS was performed for selected samples based on the galanin expression by IHC [early (n=5) with high galanin expression and late (n=6) with low galanin expression]. Five differentially regulated pathways (using Absolute GSEA) were identified as drivers for tumor progression and associated with higher galanin expression, namely, cell cycle, cell division, autophagy, transcriptional regulation of TP53, and immune system process. The top shared genes among the upregulated pathways are AURKA, BIRC5, CCNA1, CCNA2, CDC25C, CDK2, CDK6, EREG, LIG3, PIN1, TGFB1, TPX2. The results were validated using real-time PCR carried out on four cell lines [two primaries (HCT116 and HT29) and two metastatic (LoVo and SK-Co-1)]. The current study shows galanin as a potential negative biomarker. Galanin downregulation is correlated with advanced CRC staging and linked to cell cycle and division, autophagy, transcriptional regulation of TP53 and immune system response

    Experimental study of the robust global synchronization of Brockett oscillators

    Get PDF
    International audienceThis article studies the experimental synchronization of a family of a recently proposed oscillator model, i.e. the Brockett oscillator [Brockett, 2013]. Due to its structural property, Brockett oscillator can be considered as a promising benchmark nonlinear model for investigating synchronization and the consensus phenomena. Our experimental setup consists of analog circuit realizations of a network of Brockett oscillators. Experimental results obtained in this work correspond to the prior theoretical findings

    Decay Modes of the Nuclear Continuum Excited in Proton-Nucleus Interactions

    Get PDF
    This work was supported by the National Science Foundation Grant NSF PHY 78-22774 A02 & A03 and by Indiana Universit

    Novel smart composite materials for industrial wastewater treatment and reuse

    Get PDF
    Abstract: With the current levels of industrial development it is very difficult to prevent organic pollutants and toxic heavy metals from contaminating water. Thus purification of contaminated industrial water and its reuse is a global concern. The present study highlights application of a novel standalone technology in the form of polymers that efficiently extract a range of organic and inorganic impurities simultaneously for reuse of industrial effluent. Previous studies have focused on water soluble synthetic polymers for removal of organic contaminants, while biodegradable polymers are being used for extraction of toxic metals from water. Our earlier reports already describe a combination of synthetic and natural polymers with the ability to eliminate organic and inorganic spiked impurities from water on a lab scale. In the present work a series of novel smart composite materials have been synthesized and fully characterized. The avant-garde novelty of these materials for simultaneous removal of organic impurities such as phenols, anhydrides, textile dyes, pesticides, herbicides, antibiotics and inorganic heavy metals has been demonstrated and the novel polymers have shown a removal efficiency of more than 90% for each of the contaminants. Furthermore, the established 4-cycle reusability and an extensive reduction in levels of chemical oxygen demand suggests these materials would act as an improvement to the current methods for treating effluent water. The high reproducibility in synthesis, properties and elimination spectrum brands them as promising materials for industrial water remediation and reuse
    corecore