17,722 research outputs found

    A Classification of random Dirac fermions

    Full text link
    We present a detailed classification of random Dirac hamiltonians in two spatial dimensions based on the implementation of discrete symmetries. Our classification is slightly finer than that of random matrices, and contains thirteen classes. We also extend this classification to non-hermitian hamiltonians with and without Dirac structure.Comment: 15 pages, version2: typos in the table of classes are correcte

    Unitarized pion-nucleon scattering within Heavy Baryon Chiral Perturbation Theory

    Get PDF
    By means of the Inverse Amplitude Method we unitarize the elastic pion-nucleon scattering amplitudes obtained from Heavy Baryon Chiral Perturbation Theory to O(q^3). Within this approach we can enlarge their applicability range and generate the Delta(1232) resonance. We can find a reasonable description of the pion nucleon phase shifts with (q^2) parameters in agreement with the resonance saturation hypothesis. However, the uncertainties in the analysis of the low energy data as well as the large number of chiral parameters, which can have strong correlations, allow us to obtain very good fits with rather different sets of chiral constants.Comment: Shortened version to appear in Phys. Rev. D. Brief Report

    How good is the quenched approximation of QCD?

    Get PDF
    The quenched approximation for QCD is, at present and in the foreseeable future, unavoidable in lattice calculations with realistic choices of the lattice spacing, volume and quark masses. In this talk, I review an analytic study of the effects of quenching based on chiral perturbation theory. Quenched chiral perturbation theory leads to quantitative insight on the difference between quenched and unquenched QCD, and reveals clearly some of the diseases which are expected to plague quenched QCD. Uses jnl.tex and epsf.tex for figure 3. Figures 1 and 2 not included, sorry. Available as hardcopy on request.Comment: 22 pages, Wash. U. HEP/94-62 (Forgotten set of macros now included, sorry.

    Integrable 1/r21/r^2 Spin Chain with Reflecting End

    Full text link
    A new integrable spin chain of the Haldane-Shastry type is introduced. It is interpreted as the inverse-square interacting spin chain with a {\it reflecting end}. The lattice points of this model consist of the square roots of the zeros of the Laguerre polynomial. Using the ``exchange operator formalism'', the integrals of motion for the model are explicitly constructed.Comment: 13 pages, REVTeX3, with minor correction

    Neutron Electric Dipole Moment with Domain Wall Quarks

    Full text link
    We present preliminary results for nucleon dipole moments computed with domain wall fermions. Our main target is the electric dipole moment of the neutron arising from the theta term in the gauge part of the QCD lagrangian. The calculated magnetic dipole moments of the proton and neutron are in rough accord with experimental values.Comment: 3 pages. Contribution to the proceedings of Lattice 2004 (Fermilab

    Scaling functions for O(4) in three dimensions

    Get PDF
    Monte Carlo simulation using a cluster algorithm is used to compute the scaling part of the free energy for a three dimensional O(4) spin model. The results are relevant for analysis of lattice studies of high temperature QCD.Comment: 12 pages, 6 figures, uses epsf.st

    Is Heavy Baryon Approach Necessary?

    Get PDF
    It is demonstrated that using an appropriately chosen renormalization condition one can respect power counting within the relativistic baryon chiral perturbation theory without appealing to the technique of the heavy baryon approach. Explicit calculations are performed for diagrams including two-loops. It is argued that the introduction of the heavy baryon chiral perturbation theory was useful but not necessary.Comment: 9 pages, 2 figures, minor changes, references adde

    The QCD spectrum with three quark flavors

    Get PDF
    We present results from a lattice hadron spectrum calculation using three flavors of dynamical quarks - two light and one strange, and quenched simulations for comparison. These simulations were done using a one-loop Symanzik improved gauge action and an improved Kogut-Susskind quark action. The lattice spacings, and hence also the physical volumes, were tuned to be the same in all the runs to better expose differences due to flavor number. Lattice spacings were tuned using the static quark potential, so as a byproduct we obtain updated results for the effect of sea quarks on the static quark potential. We find indications that the full QCD meson spectrum is in better agreement with experiment than the quenched spectrum. For the 0++ (a0) meson we see a coupling to two pseudoscalar mesons, or a meson decay on the lattice.Comment: 38 pages, 20 figures, uses epsf. 5/29/01 revision responds to referee's Comments, changes pion fits and tables, and corrects Fig. 10 and some minor error

    Complete one-loop analysis of the nucleon's spin polarizabilities

    Get PDF
    We present a complete one-loop analysis of the four nucleon spin polarizabilities in the framework of heavy baryon chiral perturbation theory. The first non-vanishing contributions to the isovector and first corrections to the isoscalar spin polarizabilities are calculated. No unknown parameters enter these predictions. We compare our results to various dispersive analyses. We also discuss the convergence of the chiral expansion and the role of the delta isobar.Comment: 4 pp, REVTE
    • …
    corecore