844 research outputs found

    Aerodynamics of an Aerofoil in Transonic Ground Effect: Numerical Study at Full-scale Reynolds Numbers

    Get PDF
    The potential positive effects of ground proximity on the aerodynamic performance of a wing or aerofoil have long been established, but at transonic speeds the formation of shock waves between the body and the ground plane would have significant consequences. A numerical study of the aerodynamics of an RAE2822 aerofoil section in ground effect flight was conducted at freestream Mach numbers from 0·5 to 0·9, at a range of ground clearances and angles of incidence. It was found that in general the aerofoil\u27s lifting capability was still improved with decreasing ground clearance up until the point at which a lower surface shock wave formed (most commonly at the lowest clearances). The critical Mach number for the section was reached considerably earlier in ground effect than it would be in freest ream, and the buffet boundary was therefore also reached at an earlier stage. The flowfields observed were relatively sensitive to changes in any given variable, and the lower surface shock had a destabilizing effect on the pitching characteristics of the wing, indicating that sudden changes in both altii11de and attitude would be experienced during sustained transonic flight close to the ground plane. Since ground proximity hastens the lower surface shock formation, no gain in aerodynamic efficiency can be gained by flying in ground effect once that shock is present

    Competition between Diffusion and Fragmentation: An Important Evolutionary Process of Nature

    Full text link
    We investigate systems of nature where the common physical processes diffusion and fragmentation compete. We derive a rate equation for the size distribution of fragments. The equation leads to a third order differential equation which we solve exactly in terms of Bessel functions. The stationary state is a universal Bessel distribution described by one parameter, which fits perfectly experimental data from two very different system of nature, namely, the distribution of ice crystal sizes from the Greenland ice sheet and the length distribution of alpha-helices in proteins.Comment: 4 pages, 3 figures, (minor changes

    An evaluation of enteral nutrition practices and nutritional provision in children during the entire length of stay in critical care

    Get PDF
    <b>Background</b> Provision of optimal nutrition in children in critical care is often challenging. This study evaluated exclusive enteral nutrition (EN) provision practices and explored predictors of energy intake and delay of EN advancement in critically ill children.<p></p> <b>Methods</b> Data on intake and EN practices were collected on a daily basis and compared against predefined targets and dietary reference values in a paediatric intensive care unit. Factors associated with intake and advancement of EN were explored.<p></p> <b>Results</b> Data were collected from 130 patients and 887 nutritional support days (NSDs). Delay to initiate EN was longer in patients from both the General Surgical and congenital heart defect (CHD) Surgical groups [Median (IQR); CHD Surgical group: 20.3 (16.4) vs General Surgical group: 11.4 (53.5) vs Medical group: 6.5 (10.9) hours; p <= 0.001]. Daily fasting time per patient was significantly longer in patients from the General Surgical and CHD Surgical groups than those from the Medical group [% of 24 h, Median (IQR); CHD Surgical group: 24.0 (29.2) vs General Surgical group: 41.7 (66.7) vs Medical group: 9.4 (21.9); p <= 0.001]. A lower proportion of fluids was delivered as EN per patient (45% vs 73%) or per NSD (56% vs 73%) in those from the CHD Surgical group compared with those with medical conditions. Protein and energy requirements were achieved in 38% and 33% of the NSDs. In a substantial proportion of NSDs, minimum micronutrient recommendations were not met particularly in those patients from the CHD Surgical group. A higher delivery of fluid requirements (p < 0.05) and a greater proportion of these delivered as EN (p < 0.001) were associated with median energy intake during stay and delay of EN advancement. Fasting (31%), fluid restriction (39%) for clinical reasons, procedures requiring feed cessation and establishing EN (22%) were the most common reasons why target energy requirements were not met.<p></p> <b>Conclusions</b> Provision of optimal EN support remains challenging and varies during hospitalisation and among patients. Delivery of EN should be prioritized over other "non-nutritional" fluids whenever this is possible.<p></p&gt

    Thalamic inputs to dorsomedial striatum are involved in inhibitory control: evidence from the five-choice serial reaction time task in rats

    Get PDF
    Rationale Corticostriatal circuits are widely implicated in the top-down control of attention including inhibitory control and behavioural flexibility. However, recent neurophysiological evidence also suggests a role for thalamic inputs to striatum in behaviours related to salient, reward-paired cues. Objectives Here, we used designer receptors exclusively activated by designer drugs (DREADDs) to investigate the role of parafascicular (Pf) thalamic inputs to the dorsomedial striatum (DMS) using the five-choice serial reaction time task (5CSRTT) in rats. Methods The 5CSRTT requires sustained attention in order to detect spatially and temporally distributed visual cues and provides measures of inhibitory control related to impulsivity (premature responses) and compulsivity (perseverative responses). Rats underwent bilateral Pf injections of the DREADD vector, AAV2-CaMKIIa-HA-hM4D(Gi)-IRES-mCitrine. The DREADD agonist, clozapine N-oxide (CNO; 1 μl bilateral; 3 μM) or vehicle, was injected into DMS 1 h before behavioural testing. Task parameters were manipulated to increase attention load or reduce stimulus predictability respectively. Results We found that inhibition of the Pf-DMS projection significantly increased perseverative responses when stimulus predictability was reduced but had no effect on premature responses or response accuracy, even under increased attentional load. Control experiments showed no effects on locomotor activity in an open field. Conclusions These results complement previous lesion work in which the DMS and orbitofrontal cortex were similarly implicated in perseverative responses and suggest a specific role for thalamostriatal inputs in inhibitory control

    An evolutionary stage model of outsourcing and competence destruction : a Triad comparison of the consumer electronics industry

    Get PDF
    Outsourcing has gained much prominence in managerial practice and academic discussions in the last two decades or so. Yet, we still do not understand the full implications of outsourcing strategy for corporate performance. Traditionally outsourcing across borders is explained as a cost-cutting exercise, but more recently the core competency argument states that outsourcing also leads to an increased focus, thereby improving effectiveness. However, no general explanation has so far been provided for how outsourcing could lead to deterioration in a firm‟s competence base. We longitudinally analyze three cases of major consumer electronics manufacturers, Emerson Radio from the U.S., Japan‟s Sony and Philips from the Netherlands to understand the dynamic process related to their sourcing strategies. We develop an evolutionary stage model that relates outsourcing to competence development inside the firm and shows that a vicious cycle may emerge. Thus it is appropriate to look not only at how outsourcing is influenced by an organization‟s current set of competences, but also how it alters that set over time. The four stages of the model are offshore sourcing, phasing out, increasing dependence on foreign suppliers, and finally industry exit or outsourcing reduction. The evolutionary stage model helps managers understand for which activities and under which conditions outsourcing across borders is not a viable option. Results suggest that each of these firms had faced a loss of manufacturing competitiveness in its home country, to which it responded by offshoring and then outsourcing production. When a loss of competences occurred, some outsourcing decisions were reversed

    Metabolic tracing reveals novel adaptations to skeletal muscle cell energy production pathways in response to NAD+ depletion [version 1; peer review: 2 approved]

    Get PDF
    Background: Skeletal muscle is central to whole body metabolic homeostasis, with age and disease impairing its ability to function appropriately to maintain health. Inadequate NAD+ availability is proposed to contribute to pathophysiology by impairing metabolic energy pathway use. Despite the importance of NAD+ as a vital redox cofactor in energy production pathways being well-established, the wider impact of disrupted NAD+ homeostasis on these pathways is unknown. Methods: We utilised skeletal muscle myotube models to induce NAD+ depletion, repletion and excess and conducted metabolic tracing to provide comprehensive and detailed analysis of the consequences of altered NAD+ metabolism on central carbon metabolic pathways. We used stable isotope tracers, [1,2-13C] D-glucose and [U-13C] glutamine, and conducted combined 2D-1H,13C-heteronuclear single quantum coherence (HSQC) NMR spectroscopy and GC-MS analysis. Results: NAD+ excess driven by nicotinamide riboside (NR) supplementation within skeletal muscle cells resulted in enhanced nicotinamide clearance, but had no effect on energy homeostasis or central carbon metabolism. Nicotinamide phosphoribosyltransferase (NAMPT) inhibition induced NAD+ depletion and resulted in equilibration of metabolites upstream of glyceraldehyde phosphate dehydrogenase (GAPDH). Aspartate production through glycolysis and TCA cycle activity was increased in response to low NAD+, which was rapidly reversed with repletion of the NAD+ pool using NR. NAD+ depletion reversibly inhibits cytosolic GAPDH activity, but retains mitochondrial oxidative metabolism, suggesting differential effects of this treatment on sub-cellular pyridine pools. When supplemented, NR efficiently reversed these metabolic consequences. However, the functional relevance of increased aspartate levels after NAD+ depletion remains unclear, and requires further investigation. Conclusions: These data highlight the need to consider carbon metabolism and clearance pathways when investigating NAD+ precursor usage in models of skeletal muscle physiology
    corecore