35 research outputs found

    Step-on versus step-off signals in time-domain controlled source electromagnetic methods using a grounded electric dipole

    Get PDF
    The time‐domain controlled source electromagnetic method is a geophysical prospecting tool applied to image the subsurface resistivity distribution on land and in the marine environment. In its most general setup, a square‐wave current is fed into a grounded horizontal electric dipole, and several electric and magnetic field receivers at defined offsets to the imposed current measure the electromagnetic response of the Earth. In the marine environment, the application often uses only inline electric field receivers that, for a 50% duty‐cycle current waveform, include both step‐on and step‐off signals. Here, forward and inverse 1D modelling is used to demonstrate limited sensitivity towards shallow resistive layers in the step‐off electric field when transmitter and receivers are surrounded by conductive seawater. This observation is explained by a masking effect of the direct current signal that flows through the seawater and primarily affects step‐off data. During a step‐off measurement, this direct current is orders of magnitude larger than the inductive response at early and intermediate times, limiting the step‐off sensitivity towards shallow resistive layers in the seafloor. Step‐on data measure the resistive layer at times preceding the arrival of the direct current signal leading to higher sensitivity compared to step‐off data. Such dichotomous behaviour between step‐on and step‐off data is less obvious in onshore experiments due to the lack of a strong overlying conductive zone and corresponding masking effect from direct current flow. Supported by synthetic 1D inversion studies, we conclude that time‐domain controlled source electromagnetic measurements on land should apply both step‐on and step‐off data in a combined inversion approach to maximise signal‐to‐noise ratios and utilise the sensitivity characteristics of each signal. In an isotropic marine environment, step‐off electric fields have inferior sensitivity towards shallow resistive layers compared to step‐on data, resulting in an increase of non‐uniqueness when interpreting step‐off data in a single or combined inversion

    On mapping seafloor mineral deposits with central loop transient electromagnetics

    Get PDF
    Electromagnetic methods are commonly employed in exploration for land-based mineral deposits. A suite of airborne, land, and borehole electromagnetic techniques consisting of different coil and dipole configurations have been developed over the last few decades for this purpose. In contrast, although the commercial value of marine mineral deposits has been recognized for decades, the development of suitable marine electromagnetic methods for mineral exploration at sea is still in its infancy. One particularly interesting electromagnetic method, which could be used to image a mineral deposit on the ocean floor, is the central loop configuration. Central loop systems consist of concentric transmitting and receiving loops of wire. While these types of systems are frequently used in land-based or airborne surveys, to our knowledge neither system has been used for marine mineral exploration. The advantages of using central loop systems at sea are twofold: (1) simplified navigation, because the transmitter and receiver are concentric, and (2) simplified operation because only one compact unit must be deployed. We produced layered seafloor type curves for two particular types of central loop methods: the in-loop and coincident loop configurations. In particular, we consider models inspired by real marine mineral exploration scenarios consisting of overburdens 0 to 5 m thick overlying a conductive ore body 5 to 30 m thick. Modeling and resolution analyses showed that, using a 50 m(2) transmitting loop with 20 A of current, these two configurations are useful tools to determine the overburden depth to a conductive ore deposit and its thickness. In the most extreme case, absolute voltage errors on the order of 10 nV are required to resolve the base of a 30 m thick ore deposit. Whether such noise floors can be achieved in real marine environments remains to be seen

    Minimum Wages, Wage Inflation, and the Relative Wage Structure

    No full text
    This paper reports an analysis of the effect of changes in legislated minimum wages on negotiated wage increases, using micro data on Canadian labor contracts between 1966 and 1975. The analysis departs from previous studies in that it divides the sample data base into high- and low-wage sectors. The results indicate that union negotiated wage settlements reflect at least partially legislated minimum wage changes over the past contract period. However, this minimum wage effect is restricted to the low-wage sector. In addition, the sectoral results suggest that the relative wage structure should tend to narrow in the long run.
    corecore