49 research outputs found

    PTP1B Regulates Leptin Signal Transduction In Vivo

    Get PDF
    AbstractMice lacking the protein-tyrosine phosphatase PTP1B are hypersensitive to insulin and resistant to obesity. However, the molecular basis for resistance to obesity has been unclear. Here we show that PTP1B regulates leptin signaling. In transfection studies, PTP1B dephosphorylates the leptin receptor-associated kinase, Jak2. PTP1B is expressed in hypothalamic regions harboring leptin-responsive neurons. Compared to wild-type littermates, PTP1B−/− mice have decreased leptin/body fat ratios, leptin hypersensitivity, and enhanced leptin-induced hypothalamic Stat3 tyrosyl phosphorylation. Gold thioglucose treatment, which ablates leptin-responsive hypothalamic neurons, partially overcomes resistance to obesity in PTP1B−/− mice. Our data indicate that PTP1B regulates leptin signaling in vivo, likely by targeting Jak2. PTP1B may be a novel target to treat leptin resistance in obesity

    Periprandial changes of the sympathetic–parasympathetic balance related to perceived satiety in humans

    Get PDF
    Food intake regulation involves various central and peripheral mechanisms. In this study the relevance of physiological responses reflecting the autonomic nervous system were evaluated in relation to perceived satiety. Subjects were exposed to a lunch-induced hunger-satiety shift, while profiling diverse sensory, physiological, and biochemical characteristics at 15 min intervals. Sensory ratings comprised questionnaires with visual analogues scales about their feeling of satiety, desire to eat, fullness, and hunger. Physiological characteristics included heart rate, heart rate variability, and blood pressure, while biochemical markers such as cortisol levels and α-amylase activity were monitored in saliva. The four sensory ratings correlated with heart rate and salivary α-amylase suggesting a higher sympathetic tone during satiety. Furthermore, heart rate variability was associated with age and waist-to-hip ratio and cortisol levels negatively correlated with body mass index. Finally, neither chewing nor swallowing contributed to a heart rate increase at food consumption, but orosensory stimulation, as tested with modified sham feeding, caused a partial increase of heart rate. In conclusion, after meal ingestion critical physiological alterations reveal a elevated sympathetic tone, which is a potential measure of satiety

    Effects of an Alpha-4 Integrin Inhibitor on Restenosis in a New Porcine Model Combining Endothelial Denudation and Stent Placement

    Get PDF
    Restenosis remains the main complication of balloon angioplasty and/or stent implantation. Preclinical testing of new pharmacologic agents preventing restenosis largely rely on porcine models, where restenosis is assessed after endothelial abrasion of the arterial wall or stent implantation. We combined endothelial cell denudation and implantation of stents to develop a new clinically relevant porcine model of restenosis, and used this model to determine the effects of an α4 integrin inhibitor, ELN 457946, on restenosis. Balloon-angioplasty endothelial cell denudation and subsequent implantation of bare metal stents in the left anterior descending coronary, iliac, and left common carotid arteries was performed in domestic pigs, treated with vehicle or ELN 457946, once weekly via subcutaneous injections, for four weeks. After 1 month, histopathology and morphometric analyses of the arteries showed complete healing and robust, consistent restenotic response in stented arteries. Treatment with ELN 457946 resulted in a reduction in the neointimal response, with decreases in area percent stenosis between 12% in coronary arteries and 30% in peripheral vessels. This is the first description of a successful pig model combining endothelial cell denudation and bare metal stent implantation. This new double injury model may prove particularly useful to assess pharmacological effects of drug candidates on restenosis, in coronary and/or peripheral arteries. Furthermore, the ELN 457946 α4 integrin inhibitor, administered subcutaneously, reduced inflammation and restenosis in stented coronary and peripheral arteries in pigs, therefore representing a promising systemic therapeutic approach in reducing restenosis in patients undergoing angioplasty and/or stent implantation

    Intraduodenal Administration of Intact Pea Protein Effectively Reduces Food Intake in Both Lean and Obese Male Subjects

    Get PDF
    BACKGROUND: Human duodenal mucosa secretes increased levels of satiety signals upon exposure to intact protein. However, after oral protein ingestion, gastric digestion leaves little intact proteins to enter the duodenum. This study investigated whether bypassing the stomach, through intraduodenal administration, affects hormone release and food-intake to a larger extent than orally administered protein in both lean and obese subjects. METHODS: Ten lean (BMI:23.0±0.7 kg/m²) and ten obese (BMI:33.4±1.4 kg/m²) healthy male subjects were included. All subjects randomly received either pea protein solutions (250 mg/kg bodyweight in 0.4 ml/kg bodyweight of water) or placebo (0.4 ml/kg bodyweight of water), either orally or intraduodenally via a naso-duodenal tube. Appetite-profile, plasma GLP-1, CCK, and PYY concentrations were determined over a 2 h period. After 2 h, subjects received an ad-libitum meal and food-intake was recorded. RESULTS: CCK levels were increased at 10(p<0.02) and 20(p<0.01) minutes after intraduodenal protein administration (IPA), in obese subjects, compared to lean subjects, but also compared to oral protein administration (OPA)(p<0.04). GLP-1 levels increased after IPA in obese subjects after 90(p<0.02) to 120(p<0.01) minutes, compared to OPA. Food-intake was reduced after IPA both in lean and obese subjects (-168.9±40 kcal (p<0.01) and -298.2±44 kcal (p<0.01), respectively), compared to placebo. Also, in obese subjects, food-intake was decreased after IPA (-132.6±42 kcal; p<0.01), compared to OPA. CONCLUSIONS: Prevention of gastric proteolysis through bypassing the stomach effectively reduces food intake, and seems to affect obese subjects to a greater extent than lean subjects. Enteric coating of intact protein supplements may provide an effective dietary strategy in the prevention/treatment of obesity

    Factor XIII Cross-Linked Adhesive Chitosan Hydrogels

    No full text

    Neuropeptide Y Y1 receptor antisense oligodeoxynucleotides enhance food intake in energy-deprived rats

    No full text
    In the literature, conflicting data on the effect of NPY Y1 antisense oligodeoxynucleotides (ODNs) on food intake have been reported, describing either an increase or a decrease in feeding in antisense-treated animals. In the present studies antisense oligodeoxynucleotides targeted to the Y1 receptor (Y1 antisense ODNs) were used to re-investigate the functional importance of this receptor subtype in vivo in the regulation of feeding in rats. We used phosphothioate-terminal protected derivatives of two ODN sequences used in previous reports. In addition, as one of these sequences was not tested in vitro, we demonstrated its efficacy in LMTK-cells transfected with the Y1 receptor subtype. In vivo, repeated intracerebroventricular (i.c.v.) injections of Y1 antisense ODNs did not affect basal food intake or the increase in food intake after i.c.v. injection of neuropeptide Y (NPY, 300 pmol). Y1 antisense ODNs given intracerebroventricularly enhanced food intake in energy-deprived rats (+175% and +60% vs. control scrambled and sense sequences, respectively after 2 h of refeeding). Analysis of the structure of feeding behaviour revealed that Y1 antisense ODNs enhanced fasting-induced food intake during the first hour of refeeding by inducing increases in meal size (+143% and +155% vs. sense and scrambled ODNs) but not meal duration. These data suggest that the NPY Y1 receptor is not directly implicated in feeding in the rat when calorie intake is normal but might be specifically activated during energy deprivation

    Inhibition of food intake by neuropeptide Y Y5 receptor antisense oligodeoxynucleotides

    No full text
    The recently discovered rat neuropeptide Y (NPY) receptor, the Y5 subtype, has been proposed to mediate the NPY-induced feeding response and therefore plays a central role in the regulation of food intake. These conclusions were based on studies with peptidic agonists. We now report studies in which phosphothioate end-protected antisense oligodeoxynucleotides (ODNs) targeted to prepro NPY (prepro NPY antisense ODNs) or to the Y5 receptor (Y5 antisense ODNs) were used to assess the functional importance of this novel receptor subtype in vivo. NPY antisense ODNs given intracerebroventricularly to rats prevented the increase in hypothalamic NPY levels during food deprivation and inhibited fasting-induced food intake. Likewise, repeated intracerebroventricular injections of Y5 antisense ODNs prevented fasting-induced food intake in rats. Moreover, two Y5 antisense ODNs, targeted to different sequences of the receptor, significantly decreased basal food intake and inhibited the increase in food intake after intracerebroventricular injection of NPY. These effects proved to be selective, since the feeding response to galanin was not affected. Analysis of the structure of feeding behavior revealed that prepro NPY and Y5 receptor antisense ODNs reduced food intake by inducing decreases in meal size and meal duration analogous to the orexigenic effects of NPY that are mediated by increases in these parameters. Although changes in Y5 receptor density could not be measured, the results with Y5 antisense ODNs strongly suggest that this receptor subtype mediates the feeding response to exogenous and endogenous NPY. Selective Y5 antagonists may therefore be of therapeutic value for the treatment of obesity and eating disorders
    corecore