132 research outputs found

    Evidence of Transient Energy and Enstrophy Cascades in Tidal Flows: A Scale to Scale Analysis

    Get PDF
    Tidal currents are predominant in coastal areas, causing the generation of vortices at different scales. We reproduce the main process of vortex shedding generated in tidal systems with inlets and channels using a laboratory large-scale model. A filter-space technique is implemented to analyze nonlinear energy/ enstrophy transfer rates and map out the energy pathways through the flow scales of the measured velocity fields. We provide sound evidence of the transitional character of the energy cascades during a tidal period. The periodic generation and destruction of tidal vortices plays a relevant role in the transition from an inverse to a direct energy cascade within a tidal period. The period-averaged energy budget shows the coexistence of multiple cascades. Small scales follow a direct energy cascade, whereas a split-energy cascade is found at intermediate and large scales, where part of the injected energy goes to small scales and part to a larger flow scale

    Dispersion processes in weakly dissipative tidal channels

    Get PDF
    We report the results of an extensive experimental campaign dedicated to the analysis of turbulent dispersion owing to the circulations in tidal environments, characterized by a tidal inlet and a channel with lateral tidal flats. We focus on weakly-convergent and weakly-dissipative estuaries or tidal embankments, where the internal waters communicate with the open sea through an inlet mouth. Tides are reproduced as single or multiple harmonics waves. Particle Image Velocimetry is employed to measure two-dimensional surface velocity fields. Large-scale macro-vortices, generated by vortex shedding during the flood phase from the inlet barrier, tend to occupy the entire tidal flats width and are completely flushed out during the ebb phase. In all experiments, an intense residual current, with shape influenced by the large-scale flood vortices, is observed. The presence of large-scale vortices and of a residual current strongly influences the Lagrangian auto-correlation functions and the corresponding absolute dispersion time evolution. Looping auto-correlations are the signature of both periodic forcing and vortices, ultimately, leading to super diffusive regimes. An asymptotic Brownian regime is always found for the investigated range of parameters allowing for an estimate of the horizontal dispersion coefficients which turn out to decrease with the friction parameter and tend to be enhanced when the semi-diurnal constituents prevail. Finally, multiple particle statistics show multiple regimes depending on particle separations, compared to a typical injection length scale that seems to coincide with the inlet mouth dimension

    Settling velocity of microplastics exposed to wave action

    Get PDF
    Microplastic (MP) debris is recognized to be one of the most serious threats to marine environments. They are found in all seas and oceanic basins worldwide, even in the most remote areas. This is further proof that the transport of MPs is very efficient. In the present study, we focus our attention on MPs’ transport owing to the Stokes drift generated by sea waves. Recent studies have shown that the interaction between heavy particles and Stokes drift leads to unexpected phenomena mostly related to inertial effects. We perform a series of laboratory experiments with the aim to directly measure MPs’ trajectories under different wave conditions. The main objective is to quantify the inertial effect and, ultimately, suggest a new analytical formulation for the net settling velocity. The latter formula might be implemented in a larger scale transport model in order to account for inertial effects in a simplified approach

    Sea waves transport of inertial micro-plastics: Mathematical model and applications

    Get PDF
    Plastic pollution in seas and oceans has recently been recognized as one of the most impacting threats for the environment, and the increasing number of scientific studies proves that this is an issue of primary concern. Being able to predict plastic paths and concentrations within the sea is therefore fundamental to properly face this challenge. In the present work, we evaluated the effects of sea waves on inertial micro-plastics dynamics. We hypothesized a stationary input number of particles in a given control volume below the sea surface, solving their trajectories and distributions under a second-order regular wave. We developed an exhaustive group of datasets, spanning the most plausible values for particles densities and diameters and wave characteristics, with a specific focus on the Mediterranean Sea. Results show how the particles inertia significantly affects the total transport of such debris by waves

    Influence of initial conditions on absolute and relative dispersion in semi-enclosed basins

    Get PDF
    Absolute and relative dispersion are fundamental quantities employed in order to assess the mixing strength of a basin. There exists a time scale called Lagrangian Integral Scale associated to absolute dispersion that highlights the occurrence of the transition from a quadratic dependence on time to a linear dependence on time. Such a time scale is commonly adopted as an indicator of the duration needed to lose the influence of the initial conditions. This work aims to show that in a semi-enclosed basin the choice of the formulation in order to calculate the absolute dispersion can lead to different results. Moreover, the influence of initial conditions can persist beyond the Lagrangian Integral Scale. Such an influence can be appreciated by evaluating absolute and relative dispersion recursively by changing the initial conditions. Furthermore, finite-size Lyapunov exponents characterize the different regimes of the basin

    Sponges architecture by colour: new insights into the fibres morphogenesis, skeletal spatial layout and morpho-anatomical traits of a marine horny sponge species (Porifera)

    Get PDF
    This paper focuses on the skeletal architecture and morphotraits of the Mediterranean horny sponge Sarcotragus spinosulus (Demospongiae, Keratosa, Dictyoceratida, Irciniidae). This special endoskeletal system consists of a dense, variably complex connective architecture, which extends throughout the entire sponge body and is embedded in an abundant jelly-like extracellular matrix (ECM). To investigate the topographic arrangement and micro-morphotraits of these connective structures in detail and by colour, also during morphogenetic processes, histology techniques using light microscopy are essential. New information is provided on the coordinated morphogenetic processes that characterize the growth and assembly of collagenic prototype structures in the matrix of fibrous skeletal elements and drive skeleton remodelling. Our results also highlight some novelties and some remarkable peculiarities of fibrous, filamentous and fibrillar components at the levels of both composition and structure. The morphofunctional significance of skeletal architecture is suggested in the background of the anatomical complexity of S. spinosulus

    Dynamic Pressure Measurements During Vitrectomy in a Model of the Eye

    Get PDF
    Purpose: To accurately evaluate pressure changes during vitrectomy in a rigid model of the vitreous chamber and to test the efficiency of the EVA phacovitrectomy system (Dutch Ophthalmic Research Center) in terms of compensation of intraocular pressure variations. Methods: We tested 23-, 25-, and 27-gauge double-blade vitreous cutters in both vented global pressure control and automatic infusion compensation (AIC) modes in a vitreous chamber model, mimicking the real surgical procedure. Balanced salt solution and artificial vitreous, similar to the real vitreous body, were used. We tested both standard-flow (SF) and high-flow (HF) infusion systems, varying the infusion pressure between 20 and 40 mm Hg. In each experiment, flow rate was also measured. Results: Pressure drop was rapidly and efficiently compensated when 23-and 25-gauge cutters were used in AIC mode, with infusion pressures ranging between 30 and 55 mm Hg. The 27-gauge cutter was less efficient in compensating pressure variations. Pressure fluctuations related to the high-frequency motion of the cutter blade were small compared to the overall pressure variations. The use of the HF infusion system resulted in larger flow rates and lower pressure changes compared to the SF infusion system. Conclusions: Despite the rigid material of the model, the present pressure measurements are in line with previous studies performed on porcine eye. The use of AIC mode compensates intraoperative pressure drops efficiently, with both 23-and 25-gauge cutters. The HF infusion system is more efficient than the SF infusion system. Translational Relevance: The AIC infusion mode efficiently compensates intraopera-tive pressure drops, in both 23-and 25-gauge experimental vitrectomy. The HF infusion system resulted in larger flow rate and lower pressure changes

    <i>Schmidtea mediterranea</i> phylogeography: an old species surviving on a few Mediterranean islands?

    Get PDF
    Background: Schmidtea mediterranea (Platyhelminthes, Tricladida, Continenticola) is found in scattered localities on a few islands and in coastal areas of the western Mediterranean. Although S. mediterranea is the object of many regeneration studies, little is known about its evolutionary history. Its present distribution has been proposed to stem from the fragmentation and migration of the Corsica-Sardinia microplate during the formation of the western Mediterranean basin, which implies an ancient origin for the species. To test this hypothesis, we obtained a large number of samples from across its distribution area. Using known and new molecular markers and, for the first time in planarians, a molecular clock, we analysed the genetic variability and demographic parameters within the species and between its sexual and asexual populations to estimate when they diverged. Results: A total of 2 kb from three markers (COI, CYB and a nuclear intron N13) was amplified from ~200 specimens. Molecular data clustered the studied populations into three groups that correspond to the west, central and southeastern geographical locations of the current distribution of S. mediterranea. Mitochondrial genes show low haplotype and nucleotide diversity within populations but demonstrate higher values when all individuals are considered. The nuclear marker shows higher values of genetic diversity than the mitochondrial genes at the population level, but asexual populations present lower variability than the sexual ones. Neutrality tests are significant for some populations. Phylogenetic and dating analyses show the three groups to be monophyletic, with the west group being the basal group. The time when the diversification of the species occurred is between ~20 and ~4 mya, although the asexual nature of the western populations could have affected the dating analyses. Conclusions: S. mediterranea is an old species that is sparsely distributed in a harsh habitat, which is probably the consequence of the migration of the Corsica-Sardinia block. This species probably adapted to temperate climates in the middle of a changing Mediterranean climate that eventually became dry and hot. These data also suggest that in the mainland localities of Europe and Africa, sexual individuals of S. mediterranea are being replaced by asexual individuals that are either conspecific or are from other species that are better adapted to the Mediterranean climate

    Schmidtea mediterranea phylogeography: an old species surviving on a few Mediterranean islands?

    Get PDF
    Schmidtea mediterranea (Platyhelminthes, Tricladida, Continenticola) is found in scattered localities on a few islands and in coastal areas of the western Mediterranean. Although S. mediterranea is the object of many regeneration studies, little is known about its evolutionary history. Its present distribution has been proposed to stem from the fragmentation and migration of the Corsica-Sardinia microplate during the formation of the western Mediterranean basin, which implies an ancient origin for the species. To test this hypothesis, we obtained a large number of samples from across its distribution area. Using known and new molecular markers and, for the first time in planarians, a molecular clock, we analysed the genetic variability and demographic parameters within the species and between its sexual and asexual populations to estimate when they diverged. Results: A total of 2 kb from three markers (COI, CYB and a nuclear intron N13) was amplified from ~200 specimens. Molecular data clustered the studied populations into three groups that correspond to the west, central and southeastern geographical locations of the current distribution of S. mediterranea. Mitochondrial genes show low haplotype and nucleotide diversity within populations but demonstrate higher values when all individuals are considered. The nuclear marker shows higher values of genetic diversity than the mitochondrial genes at the population level, but asexual populations present lower variability than the sexual ones. Neutrality tests are significant for some populations. Phylogenetic and dating analyses show the three groups to be monophyletic, with the west group being the basal group. The time when the diversification of the species occurred is between ~20 and ~4 mya, although the asexual nature of the western populations could have affected the dating analyses. Conclusions: S. mediterranea is an old species that is sparsely distributed in a harsh habitat, which is probably the consequence of the migration of the Corsica-Sardinia block. This species probably adapted to temperate climates in the middle of a changing Mediterranean climate that eventually became dry and hot. These data also suggest that in the mainland localities of Europe and Africa, sexual individuals of S. mediterranea are being replaced by asexual individuals that are either conspecific or are from other species that are better adapted to the Mediterranean climate

    Turbulence in Rivers

    Get PDF
    The study of turbulence has always been a challenge for scientists working on geophysical flows. Turbulent flows are common in nature and have an important role in geophysical disciplines such as river morphology, landscape modeling, atmospheric dynamics and ocean currents. At present, new measurement and observation techniques suitable for fieldwork can be combined with laboratory and theoretical work to advance the understanding of river processes. Nevertheless, despite more than a century of attempts to correctly formalize turbulent flows, much still remains to be done by researchers and engineers working in hydraulics and fluid mechanics. In this contribution we introduce a general framework for the analysis of river turbulence. We revisit some findings and theoretical frameworks and provide a critical analysis of where the study of turbulence is important and how to include detailed information of this in the analysis of fluvial processes. We also provide a perspective of some general aspects that are essential for researchers/ practitioners addressing the subject for the first time. Furthermore, we show some results of interest to scientists and engineers working on river flows
    corecore