266 research outputs found

    Разработка процесса сварки алюминиевых сплавов дугой переменного тока в динамическом режиме

    Get PDF
    Объектом исследования является: процесс сварки дугой, горящей на переменном токе в динамическом режиме. Цель работы – разработка процесса сварки дугой, горящей на переменном токе в динамическом режиме. Проводился анализ специфики сварки сплавов на основе алюминия. По результатам анализа были выделены ряд проблем процесса сварки. Был разработан процесс сварки дугой, горящей на переменном токе в динамическом режиме. А так же была разработана установка с импульсным источником питания для данного процесса сварки.The object of the research is the process of welding with arc burning on the alternative current in the dynamic mode. The aim of the research is the process elaboration of welding with arc burning on the alternative current in the dynamic mode. The analysis of specificity of welding of alloys based on aluminum is conducted. Based on the results of this analysis a number of problems of the welding process are discovered. The process elaboration of welding with arc burning on the alternative current in the dynamic mode is developed. Also the plant with switched mode power supply for the welding process is designed

    Staying true with the help of others: doxastic self-control through interpersonal commitment

    Get PDF
    I explore the possibility and rationality of interpersonal mechanisms of doxastic self-control, that is, ways in which individuals can make use of other people in order to get themselves to stick to their beliefs. I look, in particular, at two ways in which people can make interpersonal epistemic commitments, and thereby willingly undertake accountability to others, in order to get themselves to maintain their beliefs in the face of anticipated “epistemic temptations”. The first way is through the avowal of belief, and the second is through the establishment of collective belief. I argue that both of these forms of interpersonal epistemic commitment can function as effective tools for doxastic self-control, and, moreover, that the control they facilitate should not be dismissed as irrational from an epistemic perspective

    Impact of climate change on hydrological conditions in a tropical West African catchment using an ensemble of climate simulations

    Get PDF
    This study evaluates climate change impacts on water resources using an ensemble of six regional climate models (RCMs)–global climate models (GCMs) in the Dano catchment (Burkina Faso). The applied climate datasets were performed in the framework of the COordinated Regional climate Downscaling Experiment (CORDEX-Africa) project.After evaluation of the historical runs of the climate models' ensemble, a statistical bias correction (empirical quantile mapping) was applied to daily precipitation. Temperature and bias corrected precipitation data from the ensemble of RCMs–GCMs was then used as input for the Water flow and balance Simulation Model (WaSiM) to simulate water balance components.The mean hydrological and climate variables for two periods (1971–2000 and 2021–2050) were compared to assess the potential impact of climate change on water resources up to the middle of the 21st century under two greenhouse gas concentration scenarios, the Representative Concentration Pathways (RCPs) 4.5 and 8.5. The results indicate (i) a clear signal of temperature increase of about 0.1 to 2.6 °C for all members of the RCM–GCM ensemble; (ii) high uncertainty about how the catchment precipitation will evolve over the period 2021–2050; (iii) the applied bias correction method only affected the magnitude of the climate change signal; (iv) individual climate models results lead to opposite discharge change signals; and (v) the results for the RCM–GCM ensemble are too uncertain to give any clear direction for future hydrological development. Therefore, potential increase and decrease in future discharge have to be considered in climate change adaptation strategies in the catchment. The results further underline on the one hand the need for a larger ensemble of projections to properly estimate the impacts of climate change on water resources in the catchment and on the other hand the high uncertainty associated with climate projections for the West African region. A water-energy budget analysis provides further insight into the behavior of the catchment.</p

    Association between microscopic brain damage as indicated by magnetization transfer imaging and anticardiolipin antibodies in neuropsychiatric lupus

    Get PDF
    The pathogenetic role of anticardiolipin antibodies (aCLs) in patients with neuropsychiatric systemic lupus erythematosus (NPSLE) without cerebral infarcts remains elusive. Magnetization transfer imaging (MTI) has proved to be a sensitive tool for detecting diffuse microscopic brain damage in NPSLE patients. In this study we examined the correlation between grey and white matter magnetization transfer ratio (MTR) parameters and the presence of IgM and IgG aCLs and lupus anticoagulant in 18 patients with systemic lupus erythematosus and a history of NPSLE but without cerebral infarcts on conventional magnetic resonance imaging. Lower grey matter mean MTR (P < 0.05), white matter mean MTR (P < 0.05), white matter peak location (P < 0.05) and grey matter peak location (trend toward statistical significance) were observed in IgM aCL-positive patients than in IgM aCL-negative patients. No significant differences were found in MTR histogram parameters with respect to IgG aCL and lupus anticoagulant status, nor with respect to anti-dsDNA or anti-ENA (extractable nuclear antigen) status. This is the first report of an association between the presence of aCLs and cerebral damage in grey and white matter in NPSLE. Our findings suggest that aCLs are associated with diffuse brain involvement in NPSLE patients

    Mid‐ to Late Holocene landscape dynamics and rural settlement in the uplands of northern Bavaria, Germany

    Get PDF
    We present results from a systematic interdisciplinary study on (pre-)historic rural settlement and landscape development in an upland region of northern Bavaria, Germany. The archaeological and geoarchaeological investigations—supported by radiocarbon dating, optically stimulated luminescence dating, and palaeoecological analysis—were performed to (i) identify so far unknown prehistoric rural settlement sites, (ii) determine site-specific soil erosion from colluvial deposits, and (iii) assess the composition of woodland from on- and offsite charcoal finds. The earliest indicators of human activities from the Younger Neolithic (late 5th to early 4th millennium B.C.E.) come from colluvial deposits. Our investigations, for the first time, show Middle to Late Bronze Age (ca. 1400–800 B.C.E.), permanent rural settlement in a German central upland region, with a peak in the Late Bronze Age. Due to the varying thicknesses of Bronze Age colluvial deposits, we assume land use practices to have triggered soil erosion. From the spectrum of wood species, Maloideae, ash, and birch are regarded as successional indicators after fire clearance in that period. Settlement continued until the 5th century B.C.E. After a hiatus of 500 years, it re-flourished in the Late Roman and Migration periods (mid-3rd–5th century C.E.) and went on in the Medieval period. Digital Archaeolog

    Selective Involvement of the Amygdala in Systemic Lupus Erythematosus

    Get PDF
    BACKGROUND: Antibodies specifically affect the amygdala in a mouse model of systemic lupus erythematosus (SLE). The aim of our study was to investigate whether there is also specific involvement of the amygdala in human SLE. METHODS AND FINDINGS: We analyzed a group of 37 patients with neuropsychiatric SLE (NP-SLE), 21 patients with SLE, and a group of 12 healthy control participants with diffusion weighted imaging (DWI). In addition, in a subset of eight patients, plasma was available to determine their anti-NMDAR antibody status. From the structural magnetic resonance imaging data, the amygdala and the hippocampus were segmented, as well as the white and gray matter, and the apparent diffusion coefficient (ADC) was retrieved. ADC values between controls, patients with SLE, and patients with NP-SLE were tested using analysis of variance with post-hoc Bonferroni correction. No differences were found in the gray or white matter segments. The average ADC in the amygdala of patients with NP-SLE and SLE (940 × 10(−6) mm(2)/s; p = 0.006 and 949 × 10(−6) mm(2)/s; p = 0.019, respectively) was lower than in healthy control participants (1152 × 10(−6) mm(2)/s). Mann-Whitney analysis revealed that the average ADC in the amygdala of patients with anti-NMDAR antibodies (n = 4; 802 × 10(−6) mm(2)/s) was lower (p = 0.029) than the average ADC of patients without anti-NMDAR antibodies (n = 4; 979 × 10(−6) mm(2)/s) and also lower (p = 0.001) than in healthy control participants. CONCLUSIONS: This is the first study to our knowledge to observe damage in the amygdala in patients with SLE. Patients with SLE with anti-NMDAR antibodies had more severe damage in the amygdala compared to SLE patients without anti-NMDAR antibodies

    Laboratory and Neuroimaging Biomarkers in Neuropsychiatric Systemic Lupus Erythematosus: Where Do We Stand, Where To Go?

    Get PDF
    Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by multi-systemic involvement. Nervous system involvement in SLE leads to a series of uncommon and heterogeneous neuropsychiatric (NP) manifestations. Current knowledge on the underlying pathogenic processes and their subsequent pathophysiological changes leading to NP-SLE manifestations is incomplete. Several putative laboratory biomarkers have been proposed as contributors to the genesis of SLE-related nervous system damage. Alongside the laboratory biomarkers, several neuroimaging tools have shown to reflect the nature of tissue microstructural damage associated with SLE, and thus were suggested to contribute to the understanding of the pathophysiological changes and subsequently help in clinical decision making. However, the number of useful biomarkers in NP-SLE in clinical practice is disconcertingly modest. In some cases it is not clear whether the biomarker is truly involved in pathogenesis, or the result of non-specific pathophysiological changes in the nervous system (e.g., neuroinflammation) or whether it is the consequence of a concomitant underlying abnormality related to SLE activity. In order to improve the diagnosis of NP-SLE and provide a better targeted care to these patients, there is still a need to develop and validate a range of biomarkers that reliably capture the different aspects of disease heterogeneity. This article critically reviews the current state of knowledge on laboratory and neuroimaging biomarkers in NP-SLE, discusses the factors that need to be addressed to make these biomarkers suitable for clinical application, and suggests potential future research paths to address important unmet needs in the NP-SLE field

    Neuropsychiatric systemic lupus erythematosus is associated with a distinct type and shape of cerebral white matter hyperintensities

    Get PDF
    OBJECTIVES: Advanced white matter hyperintensity (WMH) markers on brain MRI may help reveal underlying mechanisms and aid in the diagnosis of different phenotypes of SLE patients experiencing neuropsychiatric (NP) manifestations. METHODS: In this prospective cohort study, we included a clinically well-defined cohort of 155 patients consisting of 38 patients with NPSLE (26 inflammatory and 12 ischaemic phenotype) and 117 non-NPSLE patients. Differences in 3 T MRI WMH markers (volume, type and shape) were compared between patients with NPSLE and non-NPSLE and between patients with inflammatory and ischaemic NPSLE by linear and logistic regression analyses corrected for age, sex and intracranial volume. RESULTS: Compared with non-NPSLE [92% female; mean age 42 (13) years], patients with NPSLE [87% female; mean age 40 (14) years] showed a higher total WMH volume [B (95%-CI)]: 0.46 (0.0 7 ↔ 0.86); P = 0.021], a higher periventricular/confluent WMH volume [0.46 (0.0 6 ↔ 0.86); P = 0.024], a higher occurrence of periventricular with deep WMH type [0.32 (0.1 3 ↔ 0.77); P = 0.011], a higher number of deep WMH lesions [3.06 (1.2 1 ↔ 4.90); P = 0.001] and a more complex WMH shape [convexity: ‒0.07 (‒0.12 ↔ ‒0.02); P = 0.011, concavity index: 0.05 (0.0 1 ↔ 0.08); P = 0.007]. WMH shape was more complex in inflammatory NPSLE patients [89% female; mean age 39 (15) years] compared with patients with the ischaemic phenotype [83% female; mean age 41 (11) years] [concavity index: 0.08 (0.0 1 ↔ 0.15); P = 0.034]. CONCLUSION: We demonstrated that patients with NPSLE showed a higher periventricular/confluent WMH volume and more complex shape of WMH compared with non-NPSLE patients. This finding was particularly significant in inflammatory NPLSE patients, suggesting different or more severe underlying pathophysiological abnormalities

    MRI-Based classification of neuropsychiatric systemic lupus erythematosus patients with self-supervised contrastive learning

    Get PDF
    Introduction/Purpose: Systemic lupus erythematosus (SLE) is a chronic auto-immune disease with a broad spectrum of clinical presentations, including heterogeneous neuropsychiatric (NP) syndromes. Structural brain abnormalities are commonly found in SLE and NPSLE, but their role in diagnosis is limited, and their usefulness in distinguishing between NPSLE patients and patients in which the NP symptoms are not primarily attributed to SLE (non-NPSLE) is non-existent. Self-supervised contrastive learning algorithms proved to be useful in classification tasks in rare diseases with limited number of datasets. Our aim was to apply self-supervised contrastive learning on T1-weighted images acquired from a well-defined cohort of SLE patients, aiming to distinguish between NPSLE and non-NPSLE patients. Subjects and Methods: We used 3T MRI T1-weighted images of 163 patients. The training set comprised 68 non-NPSLE and 34 NPSLE patients. We applied random geometric transformations between iterations to augment our data sets. The ML pipeline consisted of convolutional base encoder and linear projector. To test the classification task, the projector was removed and one linear layer was measured. Validation of the method consisted of 6 repeated random sub-samplings, each using a random selection of a small group of patients of both subtypes. Results: In the 6 trials, between 79% and 83% of the patients were correctly classified as NPSLE or non-NPSLE. For a qualitative evaluation of spatial distribution of the common features found in both groups, Gradient-weighted Class Activation Maps (Grad-CAM) were examined. Thresholded Grad-CAM maps show areas of common features identified for the NPSLE cohort, while no such communality was found for the non-NPSLE group. Discussion/Conclusion: The self-supervised contrastive learning model was effective in capturing common brain MRI features from a limited but well-defined cohort of SLE patients with NP symptoms. The interpretation of the Grad-CAM results is not straightforward, but indicates involvement of the lateral and third ventricles, periventricular white matter and basal cisterns. We believe that the common features found in the NPSLE population in this study indicate a combination of tissue loss, local atrophy and to some extent that of periventricular white matter lesions, which are commonly found in NPSLE patients and appear hypointense on T1-weighted images
    corecore