328 research outputs found

    About Superluminal motions and Special Relativity: A Discussion of some recent Experiments, and the solution of the Causal Paradoxes

    Full text link
    Some experiments, performed at Berkeley, Cologne, Florence, Vienna, Orsay, Rennes, etc., led to the claim that something seems to travel with a group velocity larger than the speed c of light in vacuum. Various other experimental results seem to point in the same direction: For instance, localized wavelet- type solutions to Maxwell equations have been found, both theoretically and experimentally, that travel with superluminal speed. [Even muonic and electronic neutrinos [it has been proposed] might be "tachyons", since their square mass appears to be negative]. With regard to the first-mentioned experiments, it was recently claimed by Guenter Nimtz that those results with evanescent waves (or tunneling photons) imply superluminal signal and impulse transmission, and therefore violate Einstein causality. In this note we want to stress that, on the contrary, all such results do not place relativistic causality in jeopardy, even if they referred to actual tachyonic motions: In fact, Special Relativity can cope even with superluminal objects and waves. For instance, it is possible (at least in microphysics) to solve also the known causal paradoxes, devised for faster than light motion, although this is not widely recognized yet. Here we show, in detail and rigorously, how to solve the oldest causal paradox, originally proposed by Tolman, which is the kernel of many further tachyon paradoxes (like J.Bell's, F.A.E.Pirani's, J.D.Edmonds' and others'). The key to the solution is a careful application of tachyon mechanics, as it unambiguously follows from special relativity. At Last, in one of the two Appendices, we propose how to evaluate the group-velocity in the case of evanescent waves. [PACS nos.: 03.30.+p; 03.50.De; 41.20.Jb; 73.40.Gk; 84.40.Az; 42.82.Et ]Comment: LaTeX file: 26 pages, with 5 Figures (and two Appendices). The original version of this paper appeared in the Journal below

    Relating imperatives to action

    Get PDF
    The aim of this chapter is to provide an analysis of the use of logically complex imperatives, in particular, imperatives of the form Do A1 or A2 and Do A, if B. We argue for an analysis of imperatives in terms of classical logic which takes into account the influence of background information on imperatives. We show that by doing so one can avoid some counter-intuitive results which have been associated with analyses of imperatives in terms of classical logic. In particular, I address Hamblin's observations concerning rule-like imperatives and Ross' Paradox. The analysis is carried out within an agent-based logical framework. This analysis explicates what it means for an agent to have a successful policy for action with respect to satisfying his or her commitments, where some of these commitments have been introduced as a result of imperative language use

    Tractarian Objects and Logical Categories

    Get PDF
    It has been much debated whether Tractarian objects are what Russell would have called particulars or whether they include also properties and relations. This paper claims that the debate is misguided: there is no logical category such that Wittgenstein intended the reader of the Tractatus to understand his objects either as providing examples of or as not providing examples of that category. This is not to say that Wittgenstein set himself against the very idea of a logical category: quite the contrary. However, where Russell presents his logical variety of particulars and the various types of universal, and Frege presents his of objects and the various types of function, Wittgenstein denies the propriety of such a priori expositions. Wittgenstein envisages a variety of logical types of entity but insists that the nature of these types is something to be discovered only through analysis

    A perturbative approach to non-Markovian stochastic Schr\"odinger equations

    Full text link
    In this paper we present a perturbative procedure that allows one to numerically solve diffusive non-Markovian Stochastic Schr\"odinger equations, for a wide range of memory functions. To illustrate this procedure numerical results are presented for a classically driven two level atom immersed in a environment with a simple memory function. It is observed that as the order of the perturbation is increased the numerical results for the ensembled average state ρred(t)\rho_{\rm red}(t) approach the exact reduced state found via Imamo\=glu's enlarged system method [Phys. Rev. A. 50, 3650 (1994)].Comment: 17 pages, 4 figure

    Duration of homelessness and its relationship to use of hospital and emergency department services in Helsinki, Finland

    Get PDF
    Aims: Homelessness is associated with poor health outcomes and increased use of hospital and emergency department (ED) services. Little is known about the duration of homelessness in relation to health care service use. The aim of this study was to examine the use of hospital and ED services among the homeless in Helsinki, Finland, and for the first time, to examine the relationship between service use and duration of homelessness. Methods: Six hundred and eighty-three persons staying at least one night in a shelter between September 2009 and September 2010 were followed until the end of 2014. Using negative binominal regression analysis we calculated the use of hospital and ED services and compared the use with that of a matched control group (N = 1361). We also analyzed service use in relation to the time spent homeless during follow-up. Results: The mean time spent homeless during the follow-up was 8.5 months, one third was temporarily homeless (less than 2% of the follow-up time), but recurrent episodes of homelessness were also common. The study group’s incidence rate ratios for medical-surgical hospital days was 6.23 (95% CI: 4.73 to 8.21), for psychiatric hospital days 43.11 (95% CI: 23.02 to 80.74) and for ED visits 10.21 (95% CI: 8.77 to 11.90), compared with controls. The number of medical-surgical hospital days and ED visits/person-year increased as homelessness was prolonged, but the pattern was opposite for psychiatric hospital days. Conclusions: Homeless persons are heavy users of hospital and ED services, and there is also increased use among those temporarily homeless.</p

    Physical interpretation of stochastic Schroedinger equations in cavity QED

    Full text link
    We propose physical interpretations for stochastic methods which have been developed recently to describe the evolution of a quantum system interacting with a reservoir. As opposed to the usual reduced density operator approach, which refers to ensemble averages, these methods deal with the dynamics of single realizations, and involve the solution of stochastic Schr\"odinger equations. These procedures have been shown to be completely equivalent to the master equation approach when ensemble averages are taken over many realizations. We show that these techniques are not only convenient mathematical tools for dissipative systems, but may actually correspond to concrete physical processes, for any temperature of the reservoir. We consider a mode of the electromagnetic field in a cavity interacting with a beam of two- or three-level atoms, the field mode playing the role of a small system and the atomic beam standing for a reservoir at finite temperature, the interaction between them being given by the Jaynes-Cummings model. We show that the evolution of the field states, under continuous monitoring of the state of the atoms which leave the cavity, can be described in terms of either the Monte Carlo Wave-Function (quantum jump) method or a stochastic Schr\"odinger equation, depending on the system configuration. We also show that the Monte Carlo Wave-Function approach leads, for finite temperatures, to localization into jumping Fock states, while the diffusion equation method leads to localization into states with a diffusing average photon number, which for sufficiently small temperatures are close approximations to mildly squeezed states.Comment: 12 pages RevTeX 3.0 + 6 figures (GIF format; for higher-resolution postscript images or hardcopies contact the authors.) Submitted to Phys. Rev.

    Bose-Einstein statistics in thermalization and photoluminescence of quantum well excitons

    Full text link
    Quasi-equilibrium relaxational thermodynamics is developed to understand LA-phonon-assisted thermalization of Bose-Einstein distributed excitons in quantum wells. We study the quantum-statistical effects in the relaxational dynamics of the effective temperature of excitons T=T(t)T = T(t). When TT is less than the degeneracy temperature T0T_0, well-developed Bose-Einstein statistics of quantum well excitons leads to nonexponential and density-dependent thermalization. At low bath temperatures Tb0T_b \to 0 the thermalization of quantum-statistically degenerate excitons effectively slows down and T(t)1/lntT(t) \propto 1 / \ln t. We also analyze the optical decay of Bose-Einstein distributed excitons in perfect quantum wells and show how nonclassical statistics influences the effective lifetime τopt\tau_{opt}. In particular, τopt\tau_{opt} of a strongly degenerate gas of excitons is given by 2τR2 \tau_R, where τR\tau_R is the intrinsic radiative lifetime of quasi-two-dimensional excitons. Kinetics of resonant photoluminescence of quantum well excitons during their thermalization is studied within the thermodynamic approach and taking into account Bose-Einstein statistics. We find density-dependent photoluminescence dynamics of statistically degenerate excitons. Numerical modeling of the thermalization and photoluminescence kinetics of quasi-two-dimensional excitons are given for GaAs/AlGaAs quantum wells.Comment: 19 pages, 9 figures. Phys. Rev. B (accepted for publication

    Text mining for improved exposure assessment

    Get PDF
    Chemical exposure assessments are based on information collected via different methods, such as biomonitoring, personal monitoring, environmental monitoring and questionnaires. The vast amount of chemical-specific exposure information available from web-based databases, such as PubMed, is undoubtedly a great asset to the scientific community. However, manual retrieval of relevant published information is an extremely time consuming task and overviewing the data is nearly impossible. Here, we present the development of an automatic classifier for chemical exposure information. First, nearly 3700 abstracts were manually annotated by an expert in exposure sciences according to a taxonomy exclusively created for exposure information. Natural Language Processing (NLP) techniques were used to extract semantic and syntactic features relevant to chemical exposure text. Using these features, we trained a supervised machine learning algorithm to automatically classify PubMed abstracts according to the exposure taxonomy. The resulting classifier demonstrates good performance in the intrinsic evaluation. We also show that the classifier improves information retrieval of chemical exposure data compared to keyword-based PubMed searches. Case studies demonstrate that the classifier can be used to assist researchers by facilitating information retrieval and classification, enabling data gap recognition and overviewing available scientific literature using chemical-specific publication profiles. Finally, we identify challenges to be addressed in future development of the system.S.B. received funding from Commonwealth Scholarship Commission (http://cscuk.dfid.gov.uk/), Cambridge Trust (https://www.cambridgetrust.org/). A.K. received funding from Medical Research Council UK grant MR/M013049/1
    corecore