644 research outputs found

    Matrix Models, Emergent Gravity, and Gauge Theory

    Full text link
    Matrix models of Yang-Mills type induce an effective gravity theory on 4-dimensional branes, which are considered as models for dynamical space-time. We review recent progress in the understanding of this emergent gravity. The metric is not fundamental but arises effectively in the semi-classical limit, along with nonabelian gauge fields. This leads to a mechanism for protecting certain geometries from corrections due to the vacuum energy.Comment: 8 pages. Based on invited talks given at the Conferences "Quantum Spacetime and Noncommutative Geometry", Rome, 2008 and at "Workshop on quantum gravity and nocommutative geometry", Lisbon, 2008 and at "Emergent Gravity", Boston, 2008 and at DICE2008, Italy, 2008 and at "QG2 2008 Quantum Geometry and Quantum Gravity", Nottingham, 200

    Curvature and Gravity Actions for Matrix Models

    Full text link
    We show how gravitational actions, in particular the Einstein-Hilbert action, can be obtained from additional terms in Yang-Mills matrix models. This is consistent with recent results on induced gravitational actions in these matrix models, realizing space-time as 4-dimensional brane solutions. It opens up the possibility for a controlled non-perturbative description of gravity through simple matrix models, with interesting perspectives for the problem of vacuum energy. The relation with UV/IR mixing and non-commutative gauge theory is discussed.Comment: 17 pages; v2+v3: minor correction

    Schwarzschild Geometry Emerging from Matrix Models

    Full text link
    We demonstrate how various geometries can emerge from Yang-Mills type matrix models with branes, and consider the examples of Schwarzschild and Reissner-Nordstroem geometry. We provide an explicit embedding of these branes in R^{2,5} and R^{4,6}, as well as an appropriate Poisson resp. symplectic structure which determines the non-commutativity of space-time. The embedding is asymptotically flat with asymptotically constant \theta^{\mu\nu} for large r, and therefore suitable for a generalization to many-body configurations. This is an illustration of our previous work arXiv:1003.4132, where we have shown how the Einstein-Hilbert action can be realized within such matrix models.Comment: 21 pages, 1 figur

    Coreshine in L1506C - Evidence for a primitive big-grain component or indication for a turbulent core history?

    Full text link
    The recently discovered coreshine effect can aid in exploring the core properties and in probing the large grain population of the ISM. We discuss the implications of the coreshine detected from the molecular cloud core L1506C in the Taurus filament for the history of the core and the existence of a primitive ISM component of large grains becoming visible in cores. The coreshine surface brightness of L1506C is determined from IRAC Spitzer images at 3.6 micron. We perform grain growth calculations to estimate the grain size distribution in model cores similar in gas density, radius, and turbulent velocity to L1506C. Scattered light intensities at 3.6 micron are calculated for a variety of MRN and grain growth distributions to compare with the observed coreshine. For a core with the overall physical properties of L1506C, no detectable coreshine is predicted for an MRN size distribution. Extending the distribution to grain radii of about 0.65 μ\mum allows to reproduce the observed surface brightness level in scattered light. Assuming the properties of L1506C to be preserved, models for the growth of grains in cores do not yield sufficient scattered light to account for the coreshine within the lifetime of the Taurus complex. Only increasing the core density and the turbulence amplifies the scattered light intensity to a level consistent with the observed coreshine brightness. The grains could be part of primitive omni-present large grain population becoming visible in the densest part of the ISM, could grow under the turbulent dense conditions of former cores, or in L1506C itself. In the later case, L1506C must have passed through a period of larger density and stronger turbulence. This would be consistent with the surprisingly strong depletion usually attributed to high column densities, and with the large-scale outward motion of the core envelope observed today.Comment: 6 pages, 6 figures, accepted for publication in Astronomy & Astrophysic

    Gravity and compactified branes in matrix models

    Full text link
    A mechanism for emergent gravity on brane solutions in Yang-Mills matrix models is exhibited. Newtonian gravity and a partial relation between the Einstein tensor and the energy-momentum tensor can arise from the basic matrix model action, without invoking an Einstein-Hilbert-type term. The key requirements are compactified extra dimensions with extrinsic curvature M^4 x K \subset R^D and split noncommutativity, with a Poisson tensor \theta^{ab} linking the compact with the noncompact directions. The moduli of the compactification provide the dominant degrees of freedom for gravity, which are transmitted to the 4 noncompact directions via the Poisson tensor. The effective Newton constant is determined by the scale of noncommutativity and the compactification. This gravity theory is well suited for quantization, and argued to be perturbatively finite for the IKKT model. Since no compactification of the target space is needed, it might provide a way to avoid the landscape problem in string theory.Comment: 35 pages. V2: substantially revised and improved, conclusion weakened. V3: some clarifications, published version. V4: minor correctio

    Direct evidence of dust growth in L183 from MIR light scattering

    Get PDF
    Theoretical arguments suggest that dust grains should grow in the dense cold parts of molecular clouds. Evidence of larger grains has so far been gathered in near/mid infrared extinction and millimeter observations. Interpreting the data is, however, aggravated by the complex interplay of density and dust properties (as well as temperature for thermal emission). We present new Spitzer data of L183 in bands that are sensitive and insensitive to PAHs. The visual extinction AV map derived in a former paper was fitted by a series of 3D Gaussian distributions. For different dust models, we calculate the scattered MIR radiation images of structures that agree agree with the AV map and compare them to the Spitzer data. The Spitzer data of L183 show emission in the 3.6 and 4.5 micron bands, while the 5.8 micron band shows slight absorption. The emission layer of stochastically heated particles should coincide with the layer of strongest scattering of optical interstellar radiation, which is seen as an outer surface on I band images different from the emission region seen in the Spitzer images. Moreover, PAH emission is expected to strongly increase from 4.5 to 5.8 micron, which is not seen. Hence, we interpret this emission to be MIR cloudshine. Scattered light modeling when assuming interstellar medium dust grains without growth does not reproduce flux measurable by Spitzer. In contrast, models with grains growing with density yield images with a flux and pattern comparable to the Spitzer images in the bands 3.6, 4.5, and 8.0 micron.Comment: 13 pages, 11 figures, accepted for publication in Astronomy and Astrophysic

    Bubbles in galactic haloes

    Get PDF
    We briefly discuss a possible interconnection of vertical HI structures observed in the Milky Way Galaxy with large scale blow-outs caused by the explosions of multiple clustered SNe. We argue that the observed OB associations can produce only about 60 such events, or approximately one chimney per 3 kpc2^2 within the solar circle. We also discuss the overall properties of HI shells in nearby face-on galaxies and the distribution of Hα\alpha and dust in edge-on galaxies. We argue that the presence of dust in galactic haloes may indicate that radiation pressure is the most probable mechanism capable of transporting dust to large heights above the galactic plane. In order to make this possible, the galactic magnetic field must have a strong vertical component. We mention that SNe explosions can initiate the Parker instability which in turn creates large scale magnetic loops with a strong vertical component. Recent observations of nearby edge-on galaxies favour this suggestion.Comment: 11 pages, 4 Figs, Talk at the JENAM, May 29 -- June 3, 2000, Mosco

    Emergent Geometry and Gravity from Matrix Models: an Introduction

    Full text link
    A introductory review to emergent noncommutative gravity within Yang-Mills Matrix models is presented. Space-time is described as a noncommutative brane solution of the matrix model, i.e. as submanifold of \R^D. Fields and matter on the brane arise as fluctuations of the bosonic resp. fermionic matrices around such a background, and couple to an effective metric interpreted in terms of gravity. Suitable tools are provided for the description of the effective geometry in the semi-classical limit. The relation to noncommutative gauge theory and the role of UV/IR mixing is explained. Several types of geometries are identified, in particular "harmonic" and "Einstein" type of solutions. The physics of the harmonic branch is discussed in some detail, emphasizing the non-standard role of vacuum energy. This may provide new approach to some of the big puzzles in this context. The IKKT model with D=10 and close relatives are singled out as promising candidates for a quantum theory of fundamental interactions including gravity.Comment: Invited topical review for Classical and Quantum Gravity. 57 pages, 5 figures. V2,V3: minor corrections and improvements. V4,V5: some improvements, refs adde

    A nontrivial solvable noncommutative \phi^3 model in 4 dimensions

    Full text link
    We study the quantization of the noncommutative selfdual \phi^3 model in 4 dimensions, by mapping it to a Kontsevich model. The model is shown to be renormalizable, provided one additional counterterm is included compared to the 2-dimensional case which can be interpreted as divergent shift of the field \phi. The known results for the Kontsevich model allow to obtain the genus expansion of the free energy and of any n-point function, which is finite for each genus after renormalization. No coupling constant or wavefunction renormalization is required. A critical coupling is determined, beyond which the model is unstable. This provides a nontrivial interacting NC field theory in 4 dimensions.Comment: 24 pages, 2 figures. V2: typos fixe
    corecore