894 research outputs found

    Spontaneous Conversion from Virtual to Real Photons in the Ultrastrong Coupling Regime

    Full text link
    We show that a spontaneous release of virtual photon pairs can occur in a quantum optical system in the ultrastrong coupling regime. In this regime, which is attracting interest both in semiconductor and superconducting systems, the light-matter coupling rate {\Omega}R becomes comparable to the bare resonance frequency of photons {\omega}0. In contrast to the dynamical Casimir effect and other pair creation mechanisms, this phenomenon does not require external forces or time dependent parameters in the Hamiltonian.Comment: To appear on Phys. Rev. Let

    Molecular Bremsstrahlung Radiation at GHz Frequencies in Air

    Full text link
    A detection technique for ultra-high energy cosmic rays, complementary to the fluorescence technique, would be the use of the molecular Bremsstrahlung radiation emitted by low-energy ionization electrons left after the passage of the showers in the atmosphere. In this article, a detailed estimate of the spectral intensity of photons at ground level originating from this radiation is presented. The spectral intensity expected from the passage of the high-energy electrons of the cascade is also estimated. The absorption of the photons in the plasma of electrons/neutral molecules is shown to be negligible. The obtained spectral intensity is shown to be 2×10−212\times10^{-21} W cm−2^{-2} GHz−1^{-1} at 10 km from the shower core for a vertical shower induced by a proton of 1017.510^{17.5} eV. In addition, a recent measurement of Bremsstrahlung radiation in air at gigahertz frequencies from a beam of electrons produced at 95 keV by an electron gun is also discussed and reasonably reproduced by the model.Comment: 20 pages, 9 figures, figures (2,4,7) improved in v2, accepted by Phys. Rev.

    Ultrasensitive Piezoresistive and Piezocapacitive Cellulose-Based Ionic Hydrogels for Wearable Multifunctional Sensing

    Get PDF
    Tactile sensors, namely, flexible devices that sense physical stimuli, have received much attention in the last few decades due to their applicability in a wide range of fields like the world of wearables, soft robotics, prosthetics, and e-skin. Nevertheless, achieving a trade-off among stretchability, good sensitivity, easy manufacturability, and multisensing ability is still a challenge. Herein, an extremely flexible strain sensor composed of a cellulose-based hydrogel is presented. A natural biocompatible carboxymethylcellulose (CMC) hydrogel endowed with ionic conductivity by sodium chloride (NaCl) was used as the sensitive part. Both the sensible layer and electrodes were investigated with an innovative approach for wearable sensor applications based on electrochemical impedance spectroscopy to find the best device configuration. The sensor, exploitable both as a piezoresistor and as a piezocapacitor, presents high sensitivity to external stimuli, together with an extreme stretchability of up to 600%, showing the best strain and temperature sensitivity among the ionic conductive hydrogel-based devices presented in the literature. The very high strain sensitivity enables the hydrogel to be implemented in wearable strain sensors to monitor different human motions and physiological signals, representing a valid solution for the realization of transparent, easily manufacturable, and low-environmental-impact devices

    Ultrasensitive Piezoresistive and Piezocapacitive Cellulose-Based Ionic Hydrogels for Wearable Multifunctional Sensing

    Get PDF
    Tactile sensors, namely, flexible devices that sense physical stimuli, have received much attention in the last few decades due to their applicability in a wide range of fields like the world of wearables, soft robotics, prosthetics, and e-skin. Nevertheless, achieving a trade-off among stretchability, good sensitivity, easy manufacturability, and multisensing ability is still a challenge. Herein, an extremely flexible strain sensor composed of a cellulose-based hydrogel is presented. A natural biocompatible carboxymethylcellulose (CMC) hydrogel endowed with ionic conductivity by sodium chloride (NaCl) was used as the sensitive part. Both the sensible layer and electrodes were investigated with an innovative approach for wearable sensor applications based on electrochemical impedance spectroscopy to find the best device configuration. The sensor, exploitable both as a piezoresistor and as a piezocapacitor, presents high sensitivity to external stimuli, together with an extreme stretchability of up to 600%, showing the best strain and temperature sensitivity among the ionic conductive hydrogel-based devices presented in the literature. The very high strain sensitivity enables the hydrogel to be implemented in wearable strain sensors to monitor different human motions and physiological signals, representing a valid solution for the realization of transparent, easily manufacturable, and low-environmental-impact devices

    Microenvironment in neuroblastoma: Isolation and characterization of tumor-derived mesenchymal stromal cells

    Get PDF
    Background: It has been proposed that mesenchymal stromal cells (MSCs) promote tumor progression by interacting with tumor cells and other stroma cells in the complex network of the tumor microenvironment. We characterized MSCs isolated and expanded from tumor tissues of pediatric patients diagnosed with neuroblastomas (NB-MSCs) to define interactions with the tumor microenvironment. Methods: Specimens were obtained from 7 pediatric patients diagnosed with neuroblastoma (NB). Morphology, immunophenotype, differentiation capacity, proliferative growth, expression of stemness and neural differentiation markers were evaluated. Moreover, the ability of cells to modulate the immune response, i.e. inhibition of phytohemagglutinin (PHA) activated peripheral blood mononuclear cells (PBMCs) and natural killer (NK) cytotoxic function, was examined. Gene expression profiles, known to be related to tumor cell stemness, Wnt pathway activation, epithelial-mesenchymal transition (EMT) and tumor metastasis were also evaluated. Healthy donor bone marrow-derived MSCs (BM-MSC) were employed as controls. Results: NB-MSCs presented the typical MSC morphology and phenotype. They showed a proliferative capacity superimposable to BM-MSCs. Stemness marker expression (Sox2, Nanog, Oct3/4) was comparable to BM-MSCs. NB-MSC in vitro osteogenic and chondrogenic differentiation was similar to BM-MSCs, but NB-MSCs lacked adipogenic differentiation capacity. NB-MSCs reached senescence phases at a median passage of P7 (range, P5-P13). NB-MSCs exhibited greater immunosuppressive capacity on activated T lymphocytes at a 1:2 (MSC: PBMC) ratio compared with BM-MSCs (p = 0.018). NK cytotoxic activity was not influenced by co-culture, either with BM-MSCs or NB-MSCs. Flow-cytometry cell cycle analysis showed that NB-MSCs had an increased number of cells in the G0-G1 phase compared to BM-MSCs. Transcriptomic profiling results indicated that NB-MSCs were enriched with EMT genes compared to BM-MSCs. Conclusions: We characterized the biological features, the immunomodulatory capacity and the gene expression profile of NB-MSCs. The NB-MSC gene expression profile and their functional properties suggest a potential role in promoting tumor escape, invasiveness and metastatic traits of NB cancer cells. A better understanding of the complex mechanisms underlying the interactions between NB cells and NB-derived MSCs should shed new light on potential novel therapeutic approaches

    Il progetto pilota

    Get PDF

    Induction of annexin-1 during TRAIL-induced apoptosis in thyroid carcinoma cells

    Get PDF
    We investigated the expression of annexin-1 (ANXA1) in thyroid carcinoma cell lines and in thyroid cancers with a different degree of differentiation. The highest level of ANXA1 expression examined by Western blotting was detected in the papillary carcinoma cells (NPA) and in the follicular cells (WRO). On the other hand, the most undifferentiated thyroid carcinoma cells (ARO and FRO) presented the lowest level of ANXA1 expression. In surgical tissue specimens from 32 patients with thyroid cancers, we found high immunoreactivity for ANXA1 in papillary (PTC) and follicular (FTC) thyroid cancers while in undifferentiated thyroid cancers (UTC) the expression of the protein was barely detectable. Control thyroid tissue resulted positive for ANXA1. In summary, 70% of UTC examined weakly expressed ANXA1, whereas 65% of PTC or FTC specimens tested showed high expression of the protein. Thus ANXA1 expression may correlate with the tumorigenesis suggesting that the protein may represent an effective differentiation marker in thyroid cancer

    Laser-Induced Graphenization of PDMS as Flexible Electrode for Microsupercapacitors

    Get PDF
    Laser graphenization of polymeric surfaces has emerged as one of the most promising technologies to fabricate flexible electrodes. Unfortunately, despite the large number of materials suitable for laser-induced graphene (LIG) fabrication, there is a lack of stretchable polymers, hindering the full exploitation of LIG for flexible electronics. Herein, the laser graphenization of polydimethylsiloxane (PDMS), the most exploited elastomeric substrate for flexible electronic device fabrication, is proposed for the first time. The low carbon content and the absence of aromatic structures strongly limit the graphenization process resulting in limited conduction properties. Nevertheless, by adding triethylene glycol (TEG) as carbon source into the PDMS matrix, it is possible to improve the graphenization and to reduce the sheet resistance of the written LIG by two orders of magnitude down to 130 ohm sq−1. The PDMS-TEG material becomes a suitable candidate for flexible microsupercapacitor fabrication with specific capacitance values as high as 287 µF cm−2 and energy and power density approaching LIG-based supercapacitors fabricated onto traditional polyimide substrates
    • …
    corecore