9 research outputs found

    A selective eradication of human nonhereditary breast cancer cells by phenanthridine-derived polyADP-ribose polymerase inhibitors

    Get PDF
    INTRODUCTION: PARP-1 (polyADP-ribose polymerase-1) is known to be activated in response to DNA damage, and activated PARP-1 promotes DNA repair. However, a recently disclosed alternative mechanism of PARP-1 activation by phosphorylated externally regulated kinase (ERK) implicates PARP-1 in a vast number of signal-transduction networks in the cell. Here, PARP-1 activation was examined for its possible effects on cell proliferation in both normal and malignant cells. METHODS: In vitro (cell cultures) and in vivo (xenotransplants) experiments were performed. RESULTS: Phenanthridine-derived PARP inhibitors interfered with cell proliferation by causing G2/M arrest in both normal (human epithelial cells MCF10A and mouse embryonic fibroblasts) and human breast cancer cells MCF-7 and MDA231. However, whereas the normal cells were only transiently arrested, G2/M arrest in the malignant breast cancer cells was permanent and was accompanied by a massive cell death. In accordance, treatment with a phenanthridine-derived PARP inhibitor prevented the development of MCF-7 and MDA231 xenotransplants in female nude mice. Quiescent cells (neurons and cardiomyocytes) are not impaired by these PARP inhibitors. CONCLUSIONS: These results outline a new therapeutic approach for a selective eradication of abundant nonhereditary human breast cancers

    Individual differences in TMS sensitivity influence the efficacy of tDCS in facilitating sensorimotor adaptation

    No full text
    Background: Transcranial direct current stimulation (tDCS) can enhance cognitive function in healthy individuals, with promising applications as a therapeutic intervention. Despite this potential, variability in the efficacy of tDCS has been a considerable concern. Objective: /Hypothesis: Given that tDCS is always applied at a set intensity, we examined whether individual differences in sensitivity to brain stimulation might be one variable that modulates the efficacy of tDCS in a motor learning task. Methods: In the first part of the experiment, single-pulse transcranial magnetic stimulation (TMS) over primary motor cortex (M1) was used to determine each participant's resting motor threshold (rMT). This measure was used as a proxy of individual sensitivity to brain stimulation. In an experimental group of 28 participants, 2 mA tDCS was then applied during a motor learning task with the anodal electrode positioned over left M1. Another 14 participants received sham stimulation. Results: M1-Anodal tDCS facilitated learning relative to participants who received sham stimulation. Of primary interest was a within-group analysis of the experimental group, showing that the rate of learning was positively correlated with rMT: Participants who were more sensitive to brain stimulation as operationalized by our TMS proxy (low rMT), showed faster adaptation. Conclusions: Methodologically, the results indicate that TMS sensitivity can predict tDCS efficacy in a behavioral task, providing insight into one source of variability that may contribute to replication problems with tDCS. Theoretically, the results provide further evidence of a role of sensorimotor cortex in adaptation, with the boost from tDCS observed during acquisition

    Genetic disorders and mortality in infancy and early childhood: delayed diagnoses and missed opportunities

    No full text
    Infants admitted to a level IV neonatal intensive care unit (NICU) who do not survive early childhood are a population that is probably enriched for rare genetic disease; we therefore characterized their genetic diagnostic evaluation. This is a retrospective analysis of infants admitted to our NICU between 1 January 2011 and 31 December 2015 who were deceased at the time of records review, with age at death less than 5 years. A total of 2,670 infants were admitted; 170 later died. One hundred six of 170 (62%) had an evaluation for a genetic or metabolic disorder. Forty-seven of 170 (28%) had laboratory-confirmed genetic diagnoses, although 14/47 (30%) diagnoses were made postmortem. Infants evaluated for a genetic disorder spent more time in the NICU (median 13.5 vs. 5.0 days; p = 0.003), were older at death (median 92.0 vs. 17.5 days; p < 0.001), and had similarly high rates of redirection of care (86% vs. 79%; p = 0.28). Genetic disorders were suspected in many infants but found in a minority. Approximately one-third of diagnosed infants died before a laboratory-confirmed genetic diagnosis was made. This highlights the need to improve genetic diagnostic evaluation in the NICU, particularly to support end-of-life decision making

    Fluvial geomorphology

    No full text
    corecore