11,229 research outputs found

    Precision slew/settle technologies for flexible spacecraft

    Get PDF
    Many spacecraft missions in the next decade will require both a high degree of agility and precision pointing. Agility includes both rotational maneuvering for retargeting and translational motion for orbit adjustment and threat avoidance. The major challenge associated with such missions is the need for control over a wide range of amplitudes and frequencies, ranging from tens of degrees at less than 1 Hz to a few micron radians at hundreds of Hz. TRW's internally funded Precision Control of Agile Spacecraft (PCAS) project is concerned with developing and validating in hardware the tools necessary to successfully complete the combined agile maneuvering/precision pointing missions. Development has been undertaken on a number of fronts for quietly slewing flexible structures. Various methods for designing slew torque profiles have been investigated. Prime candidates for slew/settle scenarios include Inverse Dynamics and Parameterized Function Space. Joint work with Processor Bayo at the University of California, Santa Barbara and Professor Flashner at the University of Southern California has led to promising torque profile design methods. Active and passive vibration suppression techniques also play a key role for rapid slew/settle mission scenarios. Active members with local control loops and passive members with high loss factor viscoelastic material have been selected for hardware verification. Progress in each of these areas produces large gains in the quiet slewing of flexible spacecraft. The main thrust of the effort to date has been the development of a modular testbed for hardware validation of the precision control concepts. The testbed is a slewing eighteen foot long flexible truss. Active and passive members can be interchanged with the baseline aluminum members to augment the inherent damping in the system. For precision control the active members utilize control laws running on a high speed digital structural control processor. Tip and midspan motions of the truss are determined using optical sensors while accelerometers can be used to monitor the motions of other points of interest. Preliminary results indicate that a mix of technologies produces the greatest benefit. For example, shaping the torque profile produces large improvements in slew/settle performance, but without added damping settling times may still be excessive. With the introduction of moderate amounts of damping, slew/settle performance is vastly improved. On the other hand, introducing damping without shaping the torque profile may not yield the desired level of performance

    Effects of plasma membrane cholesterol level and cytoskeleton F-actin on cell protrusion mechanics.

    Get PDF
    Protrusions are deformations that form at the surface of living cells during biological activities such as cell migration. Using combined optical tweezers and fluorescent microscopy, we quantified the mechanical properties of protrusions in adherent human embryonic kidney cells in response to application of an external force at the cell surface. The mechanical properties of protrusions were analyzed by obtaining the associated force-length plots during protrusion formation, and force relaxation at constant length. Protrusion mechanics were interpretable by a standard linear solid (Kelvin) model, consisting of two stiffness parameters, k0 and k1 (with k0>k1), and a viscous coefficient. While both stiffness parameters contribute to the time-dependant mechanical behavior of the protrusions, k0 and k1 in particular dominated the early and late stages of the protrusion formation and elongation process, respectively. Lowering the membrane cholesterol content by 25% increased the k0 stiffness by 74%, and shortened the protrusion length by almost half. Enhancement of membrane cholesterol content by nearly two-fold increased the protrusion length by 30%, and decreased the k0 stiffness by nearly two-and-half-fold as compared with control cells. Cytoskeleton integrity was found to make a major contribution to protrusion mechanics as evidenced by the effects of F-actin disruption on the resulting mechanical parameters. Viscoelastic behavior of protrusions was further characterized by hysteresis and force relaxation after formation. The results of this study elucidate the coordination of plasma membrane composition and cytoskeleton during protrusion formation

    Simple approach to the mesoscopic open electron resonator: Quantum current oscillations

    Full text link
    The open electron resonator, described by Duncan et.al, is a mesoscopic device that has attracted considerable attention due to its remarkable behaviour (conductance oscillations), which has been explained by detailed theories based on the behaviour of electrons at the top of the Fermi sea. In this work, we study the resonator using the simple quantum quantum electrical circuit approach, developed recently by Li and Chen. With this approach, and considering a very simple capacitor-like model of the system, we are able to theoretically reproduce the observed conductance oscillations. A very remarkable feature of the simple theory developed here is the fact that the predictions depend mostly on very general facts, namely, the discrete nature of electric charge and quantum mechanics; other detailed features of the systems described enter as parameters of the system, such as capacities and inductances

    The Post-Agreement Negotiation Process: The Problems of Ratifying International Environmental Agreements

    Get PDF
    National ratification of international environmental agreements is a prime example of post-agreement negotiations. It is often the first subprocess in a larger process of sustained negotiations that occur after international accords are concluded, focused on implementation of those accords. Certainly, implementation of negotiated agreements involves legal, political, verification, and enforcement activities at both domestic and international levels. Many of these activities, including ratification, are characterized by negotiations between various stakeholders to reach mutually beneficial and acceptable means to achieve national implementation of, and compliance with, treaty provisions. This paper places ratification negotiations within the larger conceptual context of post-agreement negotiations, with the goal of understanding and explaining problems of treaty compliance. An empirical analysis is conducted to assess the impact of various inherent and situational factors on problems in the ratification process. Ultimately, we are interested in identifying ways of improving the international negotiation process that initiated these later problems in implementation

    Instrument pointing system applicability and orbiter stabilization for EVAL missions. Application studies

    Get PDF
    Related aspect of the Earth Viewing Applications Laboratory (EVAL) shuttle missions were investigated. The applicability of the gimballed Instrument Pointing System (IPS) to EVAL missions by comparing the IPS capabilities with the EVAL requirements was evaluated, and a means of stabilizing the shuttle orbiter attitude in earth viewing orientations for prolonged periods without use of the orbiter gas reaction control system was assessed

    Genetic and environmental risk factors for sexual distress and its association with female sexual dysfunction

    Get PDF
    A. Burri, Q. Rahman and T. Spector (2011). Genetic and environmental risk factors for sexual distress and its association with female sexual dysfunction. Psychological Medicine, 41, pp 2435-2445. Copyright © Cambridge University Press 2011. http://dx.doi.org/10.1017/S003329171100049
    • …
    corecore