305 research outputs found

    Effects of donor age and proliferative aging on the phenotype stability of rat aortic smooth muscle cells

    Get PDF
    Age-related effects of the vascular wall have been associated with several hemodynamic dysfunctions, including medial vascular calcification. Vascular aging has been traditionally addressed using proliferative senescence of vascu- lar smooth muscle cells (VSMC) in vitro, which induces osteoblastic transition and favors calcification in vitro. In this work, we have analyzed the relation- ship between organismal aging and proliferative senescence by comparing the proliferative aging of VSMC obtained from young, mature, and old rats (2-, 12-, and 24-month cell lines [CL], respectively). VSMC proliferated to more than 100 cumulative population doublings (CPD) without evidence of prolif- erative senescence, most likely as a consequence of telomerase induction. The apoptosis rate increased with CPD in all three CL, but the oxidation status of the cells was not modified. The magnitude of all gene expression changes caused by CPD was higher than the magnitude of the changes caused by donor age: the expressions of VSMC markers a-actin and SM22a decreased, while the expressions of transcription factors Msx2 and Runx2 and of bone morphogenetic protein-2 increased. Treatment of the cells with 2 mmol/L Pi revealed that the intensity of the effect of CPD on calcium deposition was greater than the effect of donor age. In conclusion, the proliferative lifespan of VSMC magnifies the effect of donor age on the osteoblastic transition of VSMC, therefore suggesting that in vivo vascular aging changes can be less dramatic than what is shown by in vitro aging

    The mediterranean biotypes of Tylenchulus semipenetrans in Spanish citrus orchards

    Get PDF
    Les capacités de reproduction de quatorze populations du nématode des citrus (#Tylenchulus semipenetrans$) collectées dans la principale zone de citriculture de l'Espagne ont été comparées sur oranger amer et citrange Carrizo. Toutes les populations ont été identifiées comme appartenant au biotype méditerranéen. La capacité de reproduction varie considérablement en fonction des populations. Le pouvoir infestant et le taux de reproduction des populations collectées dans la rhizosphère des porte-greffes citranges Troyer ou Carrizo sont plus élevés (P supérieur ou égal à 0,05) que ceux des populations collectées sur oranger amer. (Résumé d'auteur

    A comparison of variant theories of intact biochemical systems. I. enzyme-enzyme interactions and biochemical systems theory

    Full text link
    The need for a well-structured theory of intact biochemical systems becomes increasingly evident as one attempts to integrate the vast knowledge of individual molecular constituents, which has been expanding for several decades. In recent years, several apparently different approaches to the development of such a theory have been proposed. Unfortunately, the resulting theories have not been distinguished from each other, and this has led to considerable confusion with numerous duplications and rediscoveries. Detailed comparisons and critical tests of alternative theories are badly needed to reverse these unfortunate developments. In this paper we (1) characterize a specific system involving enzyme-enzyme interactions for reference in comparing alternative theories, and (2) analyze the reference system by applying the explicit S-system variant within biochemical systems theory (BST), which represents a fundamental framework based upon the power-law formalism and includes several variants. The results provide the first complete and rigorous numerical analysis within the power-law formalism of a specific biochemical system and further evidence for the accuracy of the explicit S-system variant within BST. This theory is shown to represent enzyme-enzyme interactions in a systematically structured fashion that facilitates analysis of complex biochemical systems in which these interactions play a prominent role. This representation also captures the essential character of the underlying nonlinear processes over a wide range of variation (on average 20-fold) in the independent variables of the system. In the companion paper in this issue the same reference system is analyzed by other variants within BST as well as by two additional theories within the same power-law formalism--flux-oriented and metabolic control theories. The results show how all these theories are related to one another.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/27903/1/0000323.pd

    Strategies for representing metabolic pathways within biochemical systems theory: Reversible pathways

    Full text link
    The search for systematic methods to deal with the integrated behavior of complex biochemical systems has over the past two decades led to the proposal of several theories of biochemical systems. Among the most promising is biochemical systems theory (BST). Recent comparisons of this theory with several others that have recently been proposed have demonstrated that all are variants of BST and share a common underlying formalism. Hence, the different variants can be precisely related and ranked according to their completeness and operational utility. The original and most fruitful variant within BST is based on a particular representation, called an S-system (for synergistic and saturable systems), that exhibits many advantages not found among alternative representations. Even within the preferred S-system representation there are options, depending on the method of aggregating fluxes, that become especially apparent when one considers reversible pathways. In this paper we focus on the paradigm situation and clearly distinguish the two most common strategies for generating an S-system representation. The first is called the "reversible" strategy because it involves aggregating incoming fluxes separately from outgoing fluxes for each metabolite to define a net flux that can be positive, negative, or zero. The second is the "irreversible" strategy, which involves aggregating forward and reverse fluxes through each reaction to define a net flux that is always positive. This second strategy has been used almost exclusively in all variants of BST. The principal results of detailed analyses are the following: (1) All S-system representations predict the same changes in dependent concentrations for a given change in an independent concentration. (2) The reversible strategy is superior to the irreversible on the basis of several criteria, including accuracy in predicting steady-state flux, accuracy in predicting transient responses, and robustness of representation. (3) Only the reversible strategy yields a representation that is able to capture the characteristic feature of amphibolic pathways, namely, the reversal of nets flux under physiological conditions. Finally, the results document the wide range of variation over which the S-system representation can accurately predict the behavior of intact biochemical systems and confirm similar results of earlier studies [Voit and Savageau, Biochemistry 26: 6869-6880 (1987)].Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/27912/1/0000333.pd

    Inorganic phosphate modulates the expression of the NaPi-2a transporter in the trans -golgi network and the interaction with PIST in the proximal tubule

    Get PDF
    Inorganic phosphate (Pi) homeostasis is maintained by the tight regulation of renal Pi excretion versus reabsorption rates that are in turn modulated by adjusting the number of Pi transporters (mainly NaPi-2a) in the proximal tubules. In response to some hormones and a high dietary Pi content, NaPi-2a is endocytosed and degraded in the lysosomes; however, we show here that some NaPi-2amolecules are targeted to the trans-Golgi network (TGN) during the endocytosis. In the TGN, NaPi-2a interacts with PIST (PDZ-domain protein interacting specifically with TC10), a TGN-resident PDZ-domain-containing protein. The extension of the interaction is proportional to the expression of NaPi-2a in the TGN, and, consistent with that, it is increased with a high Pi diet. When overexpressed in opossum kidney (OK) cells, PIST retains NaPi-2a in the TGN and inhibits Na-dependent Pi transport. Overexpression of PIST also prevents the adaptation of OK cells to a low Pi culture medium. Our data supports the view that NaPi-2a is subjected to retrograde trafficking from the plasma membrane to the TGN using one of the machineries involved in endosomal transport and explains the reported expression of NaPi-2a in the TGN

    Steady-state global optimization of metabolic non-linear dynamic models through recasting into power-law canonical models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Design of newly engineered microbial strains for biotechnological purposes would greatly benefit from the development of realistic mathematical models for the processes to be optimized. Such models can then be analyzed and, with the development and application of appropriate optimization techniques, one could identify the modifications that need to be made to the organism in order to achieve the desired biotechnological goal. As appropriate models to perform such an analysis are necessarily non-linear and typically non-convex, finding their global optimum is a challenging task. Canonical modeling techniques, such as Generalized Mass Action (GMA) models based on the power-law formalism, offer a possible solution to this problem because they have a mathematical structure that enables the development of specific algorithms for global optimization.</p> <p>Results</p> <p>Based on the GMA canonical representation, we have developed in previous works a highly efficient optimization algorithm and a set of related strategies for understanding the evolution of adaptive responses in cellular metabolism. Here, we explore the possibility of recasting kinetic non-linear models into an equivalent GMA model, so that global optimization on the recast GMA model can be performed. With this technique, optimization is greatly facilitated and the results are transposable to the original non-linear problem. This procedure is straightforward for a particular class of non-linear models known as Saturable and Cooperative (SC) models that extend the power-law formalism to deal with saturation and cooperativity.</p> <p>Conclusions</p> <p>Our results show that recasting non-linear kinetic models into GMA models is indeed an appropriate strategy that helps overcoming some of the numerical difficulties that arise during the global optimization task.</p
    • …
    corecore