1,420 research outputs found

    Parity Breaking Medium and Squeeze Operators

    Full text link
    The transition between a Minkowski space region and a parity breaking medium domain is thoroughly discussed. The requirement of continuity of the field operator content across the separating boundary of the two domains leads to Bogolyubov transformations, squeezed pairs states and squeeze operators that turn out to generate a functional SU(2) algebra. According to this algebraic approach, the reflection and transmission probability amplitude across the separating boundary are computed. The probability rate of the emission or absorption of squeezed pairs out of the vacuum (generalization of the Sauter-Schwinger-Nikishov formula) is obtained.Comment: 22 pages, slightly modified, arXiv admin note: text overlap with arXiv:1109.344

    Brane world generation by matter and gravity

    Full text link
    We present a non-compact (4 + 1) dimensional model with a local strong four-fermion interaction supplementing it with gravity. In the strong coupling regime it reveals the spontaneous translational symmetry breaking which eventually leads to the formation of domain walls, or thick 3-branes, embedded in the AdS-5 manifold. To describe this phenomenon we construct the appropriate low-energy effective Action and find kink-like vacuum solutions in the quasi-flat Riemannian metric. We discuss the generation of ultra-low-energy (3 + 1) dimensional physics and we establish the relation among the bulk five dimensional gravitational constant, the brane Newton's constants and the curvature of AdS-5 space-time. The plausible relation between the compositeness scale of the scalar matter and the symmetry breaking scale is shown to support the essential decoupling of branons, the scalar fluctuations of the brane, from the Standard Model matter, supporting their possible role in the dark matter saturation. The induced cosmological constant on the brane does vanish due to exact cancellation of matter and gravity contributions.Comment: 35 pages, JHEP3 style, refs.adde

    Symmetries and the cosmological constant puzzle

    Full text link
    We outline the evaluation of the cosmological constant in the framework of the standard field-theoretical treatment of vacuum energy and discuss the relation between the vacuum energy problem and the gauge-group spontaneous symmetry breaking. We suggest possible extensions of the 't Hooft-Nobbenhuis symmetry, in particular, its complexification till duality symmetry and discuss the compatible implementation on gravity. We propose to use the discrete time-reflection transform to formulate a framework in which one can eliminate the huge contributions of vacuum energy into the effective cosmological constant and suggest that the breaking of time--reflection symmetry could be responsible for a small observable value of this constant.Comment: 11 pages, more relevant refs, refining cutoff definition of cosmological constant + eq.for regularized pressure adde

    Some issues concerning Large-Eddy Simulation of inertial particle dispersion in turbulent bounded flows

    Full text link
    The problem of an accurate Eulerian-Lagrangian modeling of inertial particle dispersion in Large Eddy Simulation (LES) of turbulent wall-bounded flows is addressed. We run Direct Numerical Simulation (DNS) for turbulent channel flow at shear Reynolds numbers equal to 150 and 300 and corresponding a-priori and a-posteriori LES on differently coarse grids. We then tracked swarms of different inertia particles and we examined the influence of filtering and of Sub-Grid Scale (SGS) modeling for the fluid phase on particle velocity and concentration statistics. We also focused on how particle preferential segregation is predicted by LES. Results show that even ``well-resolved'' LES is unable to reproduce the physics as demonstrated by DNS, both for particle accumulation at the wall and for particle preferential segregation. Inaccurate prediction is observed for the entire range of particles considered in this study, even when the particle response time is much larger than the flow timescales not resolved in LES. Both a-priori and a-posteriori tests indicate that recovering the level of fluid and particle velocity fluctuations is not enough to have accurate prediction of near-wall accumulation and local segregation. This may suggest that reintroducing the correct amount of higher-order moments of the velocity fluctuations is also a key point for SGS closure models for the particle equation. Another important issue is the presence of possible flow Reynolds number effects on particle dispersion. Our results show that, in small Reynolds number turbulence and in the case of heavy particles, the shear fluid velocity is a suitable scaling parameter to quantify these effects

    Energy balance in lubricated drag-reduced turbulent channel flow

    Get PDF
    We use direct numerical simulation (DNS) to study drag reduction in a lubricated channel, a flow instance in which a thin layer of lubricating fluid is injected in the near-wall region so as to favour the transportation of a primary fluid. In the present configuration, the two fluids have equal density but different viscosity, so that a viscosity ratio can be defined. To cover a meaningful range of possible situations, we consider five different in the range. All DNS are run using the constant power input (CPI) approach, which prescribes that the flow rate is adjusted according to the actual pressure gradient so as to keep constant the power injected into the flow. The CPI approach has been purposely extended here for the first time to the case of multiphase flows. A phase-field method is used to describe the dynamics of the liquid-liquid interface. We unambiguously show that a significant drag reduction (DR) can be achieved for. Reportedly, the observed DR is a non-monotonic function of and, in the present case, is maximum for (flow-rate increase). Upon a detailed analysis of the energy budgets, we are able to show the existence of two different DR mechanisms. For and, DR is purely due to the effect of the surface tension-a localized elasticity element that separates the two fluids-which, decoupling the wall-normal momentum transfer mechanisms between the primary and the lubricating layer, suppresses turbulence in the lubricating layer (laminarization) and reduces the overall drag. For <[CDATA[\u3bb, turbulence can be sustained in the lubricating layer, because of the increased local Reynolds number. In this case, DR is simply due to the smaller viscosity of the lubricating layer that acts to decrease directly the corresponding wall friction. Finally, we show evidence that an upper bound for exists, for which DR cannot be observed: for, we report a slight drag enhancement, thereby indicating that the turbulence suppression observed in the lubricating layer cannot completely balance the increased friction due to the larger viscosity

    Outer core density heterogeneity and the discrepancy between PKP and PcP travel time observations

    Get PDF
    We derive 3-D maps of the Earth’s mantle, CMB and outer core by means of least squares tomographic inversions. The data set includes compressional wave travel time measurements associated with the phases P, PcP, PKPbc, PKPdf, all based on the bulletins of the International Seismological Centre (1964-1995), after source relocation by Antolik et al. [2001]. Maps of the CMB derived independently from only core-reflected (PcP) or only core-refracted (PKP) phases are not well correlated. We study the radial coherence of whole-Earth tomographic images, to investigate potential trade-offs between CMB undulations and velocity anomalies in the mantle and/or outer core. We find that imaged lateral heterogeneities in the outer core are correlated with the topography of the CMB. This, together with the studies of Wahr and De Vries [1989] and Piersanti et al. [2001], suggests that the core anomalies might not be entirely fictitious

    Fiber suspension investigation in a backward-facing step by PIV

    Get PDF
    A dilute suspension (volume fraction 0.05%) of rod-like particles in a turbulent backward-facing step flow at Reynolds number ReH=14900, is investigated by means of Particle Image Velocimetry. Two-way interactions between fluid and dispersed phase are analyzed by exploiting the high spatial resolution of the acquisitions. Mutual interactions between phases can be investigated by considering flow turbulence modulations and phenomena related to preferential concentration and orientation of fibers. Slight turbulence enhancement is reported in the laden flow and concentration data show a moderate tendency of fibers to accumulate at the channel centreline. Orientation data display a strong preferential orientation of fibers. Local fiber orientation is correlated to the direction of maximum shear showing a high level of correlation also in the flow regions featuring strong gradients
    • …
    corecore