65,024 research outputs found

    RKKY interaction on the surface of three-dimensional Dirac semimetals

    Full text link
    We study the RKKY interaction between two magnetic impurities located on the surface of a three-dimensional Dirac semimetal with two Dirac nodes in the band structure. By taking into account both bulk and surface contributions to the exchange interaction between the localized spins, we demonstrate that the surface contribution in general dominates the bulk one at distances larger than the inverse node separation due to a weaker power-law decay. We find a strong anisotropy of the surface term with respect to the spins being aligned along the node separation axis or perpendicular to it. In the many impurity dilute regime, this implies formation of quasi-one-dimensional magnetic stripes orthogonal to the node axis. We also discuss the effects of a surface spin-mixing term coupling electrons from spin-degenerate Fermi arcs.Comment: 7,5 pages, 3 figures (+4 pages of Appendixes

    Generating Macroscopic Superpositions with Interacting Bose-Einstein Condensates: Multi-Mode Speed-Ups and Speed Limits

    Full text link
    We theoretically investigate the effect of multi-mode dynamics on the creation of macroscopic superposition states (spin-cat states) in Bose-Einstein condensates via one-axis twisting. A two-component Bose-Einstein condensate naturally realises an effective one-axis twisting interaction, under which an initially separable state will evolve toward a spin-cat state. However, the large evolution times necessary to realise these states is beyond the scope of current experiments. This evolution time is proportional to the degree of asymmetry in the relative scattering lengths of the system, which results in the following trade-off; faster evolution times are associated with an increase in multi-mode dynamics, and we find that generally multi-mode dynamics reduce the degree of entanglement present in the final state. However, we find that highly entangled cat-like states are still possible in the presence of significant multi-mode dynamics, and that these dynamics impose a speed-limit on the evolution such states

    Simulating star formation in molecular cloud cores I. The influence of low levels of turbulence on fragmentation and multiplicity

    Get PDF
    We present the results of an ensemble of simulations of the collapse and fragmentation of dense star-forming cores. We show that even with very low levels of turbulence the outcome is usually a binary, or higher-order multiple, system. We take as the initial conditions for these simulations a typical low-mass core, based on the average properties of a large sample of observed cores. All the simulated cores start with a mass of M=5.4M⊙M = 5.4 M_{\odot}, a flattened central density profile, a ratio of thermal to gravitational energy αtherm=0.45\alpha_{\rm therm} = 0.45 and a ratio of turbulent to gravitational energy αturb=0.05\alpha_{\rm turb} = 0.05 . Even this low level of turbulence is sufficient to produce multiple star formation in 80% of the cores; the mean number of stars and brown dwarfs formed from a single core is 4.55, and the maximum is 10. At the outset, the cores have no large-scale rotation. The only difference between each individual simulation is the detailed structure of the turbulent velocity field. The multiple systems formed in the simulations have properties consistent with observed multiple systems. Dynamical evolution tends preferentially to eject lower mass stars and brown dwarves whilst hardening the remaining binaries so that the median semi-major axis of binaries formed is ∼30\sim 30 au. Ejected objects are usually single low-mass stars and brown dwarfs, yielding a strong correlation between mass and multiplicity. Our simulations suggest a natural mechanism for forming binary stars that does not require large-scale rotation, capture, or large amounts of turbulence.Comment: 20 pages, 12 figures submitted to A&

    Critical Behavior of Coupled q-state Potts Models under Weak Disorder

    Full text link
    We investigate the effect of weak disorder on different coupled qq-state Potts models with q≤4q\le 4 using two loops renormalisation group. This study presents new examples of first order transitions driven by randomness. We found that weak disorder makes the models decouple. Therefore, it appears that no relations emerge, at a perturbation level, between the disordered q1×q2q_1\times q_2-state Potts model and the two disordered q1q_1, q2q_2-state Potts models (q1≠q2q_1\ne q_2), despite their central charges are similar according to recent numerical investigations. Nevertheless, when two qq-state Potts models are considered (q>2q>2), the system remains always driven in a strong coupling regime, violating apparently the Imry-Wortis argument.Comment: 7 pages + 1 PS figure (Latex

    Discs in misaligned binary systems

    Get PDF
    We perform SPH simulations to study precession and changes in alignment between the circumprimary disc and the binary orbit in misaligned binary systems. We find that the precession process can be described by the rigid-disc approximation, where the disc is considered as a rigid body interacting with the binary companion only gravitationally. Precession also causes change in alignment between the rotational axis of the disc and the spin axis of the primary star. This type of alignment is of great important for explaining the origin of spin-orbit misaligned planetary systems. However, we find that the rigid-disc approximation fails to describe changes in alignment between the disc and the binary orbit. This is because the alignment process is a consequence of interactions that involve the fluidity of the disc, such as the tidal interaction and the encounter interaction. Furthermore, simulation results show that there are not only alignment processes, which bring the components towards alignment, but also anti-alignment processes, which tend to misalign the components. The alignment process dominates in systems with misalignment angle near 90 degrees, while the anti-alignment process dominates in systems with the misalignment angle near 0 or 180 degrees. This means that highly misaligned systems will become more aligned but slightly misaligned systems will become more misaligned.Comment: 15 pages, 16 figures, 1 table, accepted for publication in MNRA

    An effective Hamiltonian for phase fluctuations on a lattice: an extended XY model

    Full text link
    We derive an effective Hamiltonian for phase fluctuations in an s-wave superconductor starting from the attractive Hubbard model on a square lattice. In contrast to the common assumption, we find that the effective Hamiltonian is not the usual XY model but is of an extended XY type. This extended feature is robust and leads to essential corrections in understanding phase fluctuations on a lattice. The effective coupling in the Hamiltonian varies significantly with temperature.Comment: 2 figure

    Solvable Critical Dense Polymers on the Cylinder

    Full text link
    A lattice model of critical dense polymers is solved exactly on a cylinder with finite circumference. The model is the first member LM(1,2) of the Yang-Baxter integrable series of logarithmic minimal models. The cylinder topology allows for non-contractible loops with fugacity alpha that wind around the cylinder or for an arbitrary number ell of defects that propagate along the full length of the cylinder. Using an enlarged periodic Temperley-Lieb algebra, we set up commuting transfer matrices acting on states whose links are considered distinct with respect to connectivity around the front or back of the cylinder. These transfer matrices satisfy a functional equation in the form of an inversion identity. For even N, this involves a non-diagonalizable braid operator J and an involution R=-(J^3-12J)/16=(-1)^{F} with eigenvalues R=(-1)^{ell/2}. The number of defects ell separates the theory into sectors. For the case of loop fugacity alpha=2, the inversion identity is solved exactly for the eigenvalues in finite geometry. The eigenvalues are classified by the physical combinatorics of the patterns of zeros in the complex spectral-parameter plane yielding selection rules. The finite-size corrections are obtained from Euler-Maclaurin formulas. In the scaling limit, we obtain the conformal partition functions and confirm the central charge c=-2 and conformal weights Delta_t=(t^2-1)/8. Here t=ell/2 and t=2r-s in the ell even sectors with Kac labels r=1,2,3,...; s=1,2 while t is half-integer in the ell odd sectors. Strikingly, the ell/2 odd sectors exhibit a W-extended symmetry but the ell/2 even sectors do not. Moreover, the naive trace summing over all ell even sectors does not yield a modular invariant.Comment: 44 pages, v3: minor correction
    • …
    corecore