220 research outputs found

    Estimation of Ambient Air Quality in Delhi

    Get PDF

    Determination of Antioxidant Capacity and Free Radical Scavenging Activity of Milk from Native Cows (Bos Indicus), Exotic Cows (Bos Taurus), and Riverine Buffaloes (Bubalus Bubalis) Across Different Lactation Stages

    Get PDF
    The aim of this study was to evaluate comparative changes in total antioxidant capacity and free radical scavenging activity of milk during lactation in different cattle types and buffaloes. Milk samples from a total of 96 healthy animals of Sahiwal cows (Indian native cattle), Karan Fries cows (Cross-bred), Holstein Frisian cows (exotic cattle) and Murrah buffaloes (Riverine buffaloes) were collected at different lactation stages; early lactation (5-15 days), peak (30-60 days), mid (100-140 days) and late lactation (>215 days). The total antioxidant capacity (TAC) of milk was measured by ferric reducing/antioxidant power assay (FRAP) and free radical scavenging activity was evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals. TAC in milk was higher during early lactation. Similar results were observed for DPPH radical scavenging activity of the samples. The data suggested that milk during the early lactation period of dairy cows and buffaloes had higher content of antioxidants in comparison to other stages of lactation

    Structural basis for mutation-induced destabilization of profilin 1 in ALS

    Get PDF
    Mutations in profilin 1 (PFN1) are associated with amyotrophic lateral sclerosis (ALS); however, the pathological mechanism of PFN1 in this fatal disease is unknown. We demonstrate that ALS-linked mutations severely destabilize the native conformation of PFN1 in vitro and cause accelerated turnover of the PFN1 protein in cells. This mutation-induced destabilization can account for the high propensity of ALS-linked variants to aggregate and also provides rationale for their reported loss-of-function phenotypes in cell-based assays. The source of this destabilization is illuminated by the X-ray crystal structures of several PFN1 proteins, revealing an expanded cavity near the protein core of the destabilized M114T variant. In contrast, the E117G mutation only modestly perturbs the structure and stability of PFN1, an observation that reconciles the occurrence of this mutation in the control population. These findings suggest that a destabilized form of PFN1 underlies PFN1-mediated ALS pathogenesis

    Allosteric inhibition of a stem cell RNA-binding protein by an intermediary metabolite

    Get PDF
    Gene expression and metabolism are coupled at numerous levels. Cells must sense and respond to nutrients in their environment, and specialized cells must synthesize metabolic products required for their function. Pluripotent stem cells have the ability to differentiate into a wide variety of specialized cells. How metabolic state contributes to stem cell differentiation is not understood. In this study, we show that RNA-binding by the stem cell translation regulator Musashi-1 (MSI1) is allosterically inhibited by 18-22 carbon omega-9 monounsaturated fatty acids. The fatty acid binds to the N-terminal RNA Recognition Motif (RRM) and induces a conformational change that prevents RNA association. Musashi proteins are critical for development of the brain, blood, and epithelium. We identify stearoyl-CoA desaturase-1 as a MSI1 target, revealing a feedback loop between omega-9 fatty acid biosynthesis and MSI1 activity. We propose that other RRM proteins could act as metabolite sensors to couple gene expression changes to physiological state

    Structural and Molecular Analysis of a Protective Epitope of Lyme Disease Antigen OspA and Antibody Interactions

    Get PDF
    The murine monoclonal antibody LA-2 recognizes a clinically protective epitope on outer surface protein (OspA) of Borrelia burgdorferi, the causative agent of Lyme disease in North America. Human antibody equivalence to LA-2 is the best serologic correlate of protective antibody responses following OspA vaccination. Understanding the structural and functional basis of the LA-2 protective epitope is important for developing OspA-based vaccines and discovering prophylactic antibodies against Lyme disease. Here, we present a detailed structure-based analysis of the LA-2/OspA interaction interface and identification of residues mediating antibody recognition. Mutations were introduced into both OspA and LA-2 based on computational predictions on the crystal structure of the complex, and experimentally tested for in-vitro binding and borreliacidal activity. We find that Y32 and H49 on the LA-2 light chain, N52 on the LA-2 heavy chain and residues A208, N228 and N251 on OspA were the key constituents of OspA/LA-2 interface. These results reveal specific residues that may be exploited to modulate recognition of the protective epitope of OspA and have implications for design of vaccines against Lyme disease

    Seasonal effect and long-term nutritional status following exit from a Community-Based Management of Severe Acute Malnutrition program in Bihar, India.

    Get PDF
    BACKGROUND/OBJECTIVES: Children aged 6 months to 5 years completing treatment for severe acute malnutrition (SAM) in a Médecins Sans Frontières Community Management of Acute Malnutrition (CMAM) program in Bihar, India, showed high cure rates; however, the program suffered default rates of 38%. This report describes the nutritional status of 1956 children followed up between 3 and 18 months after exiting the program. SUBJECTS/METHODS: All children aged 6-59 months discharged as cured with mid-upper arm circumference (MUAC) ⩾120 mm or who defaulted from the program with MUAC <115 mm were traced at 3, 6, 9, 12 and 18 months (±10 days) before three exit reference dates: first at the end of the food insecure period, second after the 2-month food security and third after the 4-month food security. RESULTS: Overall, 68.7% (n=692) of defaulters and 76.2% (n=1264) of children discharged as cured were traced. Combined rates of non-recovery in children who defaulted with MUAC <115 mm were 41%, 30.1%, 9.9%, 6.1% and 3.6% at 3, 6, 9, 12 and 18 months following exit, respectively. Combined rates of relapse among cured cases (MUAC ⩾120 mm) were 9.1%, 2.9%, 2.1%, 2.8% and 0% at 3, 6, 9, 12 and 18 months following discharge, respectively. Prevalence of undernutrition increased substantially for both groups traced during low food security periods. Odds of death were much higher for children defaulting with MUAC <110 mm when compared with children discharged as cured, who shared the same mortality risk as those defaulting with MUAC 110-<115 mm. CONCLUSIONS: Seasonal food security predicted short-term nutritional status after exit, with relapse rates and non-recovery from SAM much higher during food insecurity. Mortality outcomes suggest that a MUAC of 110 mm may be considered an appropriate admission point for SAM treatment programs in this context

    Crystal structure of APOBEC3A bound to single-stranded DNA reveals structural basis for cytidine deamination and specificity

    Get PDF
    Nucleic acid editing enzymes are essential components of the immune system that lethally mutate viral pathogens and somatically mutate immunoglobulins, and contribute to the diversification and lethality of cancers. Among these enzymes are the seven human APOBEC3 deoxycytidine deaminases, each with unique target sequence specificity and subcellular localization. While the enzymology and biological consequences have been extensively studied, the mechanism by which APOBEC3s recognize and edit DNA remains elusive. Here we present the crystal structure of a complex of a cytidine deaminase with ssDNA bound in the active site at 2.2 A. This structure not only visualizes the active site poised for catalysis of APOBEC3A, but pinpoints the residues that confer specificity towards CC/TC motifs. The APOBEC3A-ssDNA complex defines the 5\u27-3\u27 directionality and subtle conformational changes that clench the ssDNA within the binding groove, revealing the architecture and mechanism of ssDNA recognition that is likely conserved among all polynucleotide deaminases, thereby opening the door for the design of mechanistic-based therapeutics

    Functional analysis of bovine interleukin-10 receptor alpha in response to Mycobacterium avium subsp. paratuberculosis lysate using CRISPR/Cas9

    Get PDF
    peer-reviewedBackground The interleukin-10 receptor alpha (IL10RA) gene codes for the alpha chain of the IL-10 receptor which binds the cytokine IL-10. IL-10 is an anti-inflammatory cytokine with immunoregulatory function during the pathogenesis of many inflammatory disorders in livestock, including Johne’s disease (JD). JD is a chronic enteritis in cattle caused by Mycobacterium avium subsp. paratuberculosis (MAP) and is responsible for significant economic losses to the dairy industry. Several candidate genes including IL10RA have been found to be associated with JD. The aim of this study was to better understand the functional significance of IL10RA in the context of immune stimulation with MAP cell wall lysate. Results An IL10RA knock out (KO) bovine mammary epithelial cell (MAC-T) line was generated using the CRISPR/cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9) gene editing system. These IL10RA KO cells were stimulated with the immune stimulant MAP lysate +/− IL-10, or with LPS as a positive control. In comparison to unedited cells, relative quantification of immune-related genes after stimulation revealed that knocking out IL10RA resulted in upregulation of pro-inflammatory cytokine gene expression (TNFA, IL1A, IL1B and IL6) and downregulation of suppressor of cytokine signaling 3 (SOCS3), a negative regulator of pro-inflammatory cytokine signaling. At the protein level knocking out IL10RA also resulted in upregulation of inflammatory cytokines - TNF-α and IL-6 and chemokines - IL-8, CCL2 and CCL4, relative to unedited cells. Conclusions The findings of this study illustrate the broad and significant effects of knocking out the IL10RA gene in enhancing pro-inflammatory cytokine expression and further support the immunoregulatory role of IL10RA in eliciting an anti-inflammatory response as well as its potential functional involvement during the immune response associated with JD

    Internet of Medical Things (IoMT) and Reflective Belief Design-Based Big Data Analytics with Convolution Neural Network-Metaheuristic Optimization Procedure (CNN-MOP)

    Get PDF
    In recent times, the Internet of Medical Things (IoMT) is a new loomed technology, which has been deliberated as a promising technology designed for various and broadly connected networks. In an intelligent healthcare system, the framework of IoMT observes the health circumstances of the patients dynamically and responds to backings their needs, which helps detect the symptoms of critical rare body conditions based on the data collected. Metaheuristic algorithms have proven effective, robust, and efficient in deciphering real-world optimization, clustering, forecasting, classification, and other engineering problems. The emergence of extraordinary, very large-scale data being generated from various sources such as the web, sensors, and social media has led the world to the era of big data. Big data poses a new contest to metaheuristic algorithms. So, this research work presents the metaheuristic optimization algorithm for big data analysis in the IoMT using gravitational search optimization algorithm (GSOA) and reflective belief network with convolutional neural networks (DBN-CNNs). Here the data optimization has been carried out using GSOA for the collected input data. The input data were collected for the diabetes prediction with cardiac risk prediction based on the damage in blood vessels and cardiac nerves. Collected data have been classified to predict abnormal and normal diabetes range, and based on this range, the risk for a cardiac attack has been predicted using SVM. The performance analysis is made to reveal that GSOA-DBN_CNN performs well in predicting diseases. The simulation results illustrate that the GSOA-DBN_CNN model used for prediction improves accuracy, precision, recall, F1-score, and PSNR

    Politics of #LoSha: using naming and shaming as a feminist tool on Facebook

    Get PDF
    This chapter examines the new feminist intervention in India against sexual harassment (SH) through the online weapon of anonymously listing sexual offenders. The publication of the list on Facebook—known as the List of Shame (or #LoSha)—was inspired by the #metoo campaign following the Hollywood Weinstein affair and was composed through a collection of first-hand survivor narratives. A list of 70 names of alleged academic sexual offenders was first shared by a lawyer based in the US, and became viral on Facebook. This chapter will look at how this campaign used naming as a risk-taking tool to point at the lack of institutional frameworks within academic spaces. In doing so, it successfully used the online space of Facebook to create a feminist debate around the issue of sexual harassment transcending geographical and hierarchical barriers and to raise questions regarding the viability of the established feminist recourses against SH. Using the methodological tool of situated critique (Bannerji, Thinking Through: Essays on Feminism, Marxism, and Anti-Racism. Toronto: Women’s Press, 1995), in this chapter I will utilize my own experience of participating in the list as well as in the larger feminist debate to discuss the politics of risk-taking and solidarity and the implications of list-activism. In doing so, it has re-established the role of cyberfeminism (Daniels, Women’s Studies Quarterly, 37 (1 & 2): 101–124, 2009) in India and surfaced a new intersectional autocritique of the academia based on caste, class and gender. Though questions regarding the method remain, the use of Facebook for providing survivors a voice with anonymity promises new boundaries of empowerment and fear
    corecore