49 research outputs found

    Mean Field Dynamics in Non-Abelian Plasmas from Classical Transport Theory

    Get PDF
    Based on classical transport theory, we present a general set of covariant equations describing the dynamics of mean fields and their statistical fluctuations in a non-Abelian plasma in or out-of-equilibrium. A procedure to obtain the collision integrals for the Boltzmann equation from the microscopic theory is described. As an application, we study a hot non-Abelian plasma close to equilibrium, where the fluctuations are integrated out explicitly. For soft fields, and at logarithmic accuracy, we obtain B\"odeker's effective theory.Comment: 4 pages, revtex, no figures. Typo removed, a reference updated, version as to appear in Phys. Rev. Let

    Heavy Quark Radiative Energy Loss - Applications to RHIC

    Full text link
    Heavy quark energy loss in a hot QCD plasma is computed taking into account the competing effects due to suppression of zeroth order gluon radiation bellow the plasma frequency and the enhancement of gluon radiation due to transition energy loss and medium induced Bremsstrahlung. Heavy quark medium induced radiative energy loss is derived to all orders in opacity, (L/λg)n(L/\lambda_g)^n. Numerical evaluation of the energy loss suggest small suppression of high pp_\perp charm quarks, and therefore provide a possible explanation for the null effects observed by PHENIX in the prompt electron spectrum in Au+AuAu+Au as s=130\sqrt{s}=130 and 200 AGeV.Comment: 4 pages, 4 figures, Contributed to 17th International Conference on Ultra Relativistic Nucleus-Nucleus Collisions (Quark Matter 2004), Oakland, California, 11-17 Jan 200

    Local equilibrium of the quark-gluon plasma

    Full text link
    Within kinetic theory, we look for local equilibrium configurations of the quark-gluon plasma by maximizing the local entropy. We use the well-established transport equations in the Vlasov limit, supplemented with the Waldmann-Snider collision terms. Two different classes of local equilibrium solutions are found. The first one corresponds to the configurations that comply with the so-called collisional invariants. The second one is given by the distribution functions that cancel the collision terms, representing the most probable binary interactions with soft gluon exchange in the t-channel. The two sets of solutions agree with each other if we go beyond these dominant processes and take into account subleading quark-antiquark annihilation/creation and gluon number non-conserving processes. The local equilibrium state appears to be colorful, as the color charges are not locally neutralized. Properties of such an equilibrium state are analyzed. In particular, the related hydrodynamic equations of a colorful fluid are derived. Possible neutralization processes are also briefly discussed.Comment: 20 pages; minor changes, to be published in Phys. Rev.

    Color, Spin and Flavor Diffusion in Quark-Gluon Plasmas

    Full text link
    In weakly interacting quark-gluon plasmas diffusion of color is found to be much slower than the diffusion of spin and flavor because color is easily exchanged by the gluons in the very singular forward scattering processes. If the infrared divergence is cut off by a magnetic mass, mmagαsTm_{mag}\sim \alpha_sT, the color diffusion is Dcolor(αsln(1/αs)T)1D_{color}\sim (\alpha_s\ln(1/\alpha_s)T)^{-1}, a factor αs\alpha_s smaller than spin and flavor diffusion. A similar effect is expected in electroweak plasmas above MWM_W due to W±W^\pm exchanges. The color conductivity in quark-gluon plasmas and the electrical conductivity in electroweak plasmas are correspondingly small in relativistic heavy ion collisions and the very early universe.Comment: 5 pages, no figure

    Decoherence and energy loss in QCD cascades in nuclear collisions

    Full text link
    The medium modifications in the properties of QCD cascades are considered. In particular, the changes in the intrajet rapidity distributions due to medium-induced decoherence, collisional losses of cascade gluons and those of final prehadrons are analyzed

    Transport Theory of Massless Fields

    Get PDF
    Using the Schwinger-Keldysh technique we discuss how to derive the transport equations for the system of massless quantum fields. We analyse the scalar field models with quartic and cubic interaction terms. In the ϕ4\phi^4 model the massive quasiparticles appear due to the self-interaction of massless bare fields. Therefore, the derivation of the transport equations strongly resembles that one of the massive fields, but the subset of diagrams which provide the quasiparticle mass has to be resummed. The kinetic equation for the finite width quasiparticles is found, where, except the mean-field and collision terms, there are terms which are absent in the standard Boltzmann equation. The structure of these terms is discussed. In the massless ϕ3\phi^3 model the massive quasiparticles do not emerge and presumably there is no transport theory corresponding to this model. It is not surprising since the ϕ3\phi^3 model is anyhow ill defined.Comment: 32 pages, no macro

    Non-Abelian Excitations of the Quark-Gluon Plasma

    Full text link
    We present new, non-abelian, solutions to the equations of motion which describe the collective excitations of a quark-gluon plasma at high temperature. These solutions correspond to spatially uniform color oscillations.Comment: 8 pages LaTex, 1 figure (not included; available upon request), Saclay preprint T94/0

    Purely perturbative Boltzmann equation for hot non-Abelian gauge theories

    Full text link
    In the perturbation theory, trasnport phenomena in hot non-Abelian gauge theories like QCD are often plagued with infrared singularities or nonperturbative effects. We show, in the context of the Kadanoff & Baym formalism, that there are certain nonequilibrium processes which are free from such difficulties. For these processes, due to an interplay between the macroscopic and microscopic physics, characteristic time scale (the mesoscale) naturally enters as an infrared cutoff and purely perturbative description by the Boltzmann equation is valid.Comment: 4 pages, revtex, to appear in Physical Review

    Color plasma oscillation in strangelets

    Get PDF
    The dispersion relation and damping rate of longitudinal color plasmons in finite strange quark matter (strangelets) are evaluated in the limits of weak coupling, low temperature, and long wavelength. The property of the QCD vacuum surrounding a strangelet makes the frequency of the plasmons nearly the same as the color plasma frequency of bulk matter. The plasmons are damped by their coupling with individual excitations of particle-hole pairs of quarks, of which the energy levels are discretized by the boundary. For strangelets of macroscopic size, the lifetime of the plasmons is found to be proportional to the size, as in the case of the usual plasma oscillations in metal nanoparticles.Comment: 9 pages (REVTeX), 2 Postscript figures, to be published in Phys. Rev.

    The Ter-Mikayelian Effect on QCD Radiative Energy Loss

    Full text link
    The color dielectric modification of the gluon dispersion relation in a dense QCD medium suppresses both the soft and collinear gluon radiation associated with jet production. We compute both the longitudinal and transverse plasmon contributions to the zeroth order in opacity radiative energy loss. This QCD analog of the Ter-Mikayelian effect in QED leads to 30\sim 30% reduction of the energy loss of high transverse momentum charm quarks produced in a QCD plasma with a characteristic Debye mass μ0.5\mu\sim 0.5 GeV.Comment: 18 Pages, 16 Figure
    corecore