160 research outputs found
Gas temperature and density measurements based on spectrally resolved Rayleigh-Brillouin scattering
The use of molecular Rayleigh scattering for measurements of gas density and temperature is evaluated. The technique used is based on the measurement of the spectrum of the scattered light, where both temperature and density are determined from the spectral shape. Planar imaging of Rayleigh scattering from air using a laser light sheet is evaluated for ambient conditions. The Cramer-Rao lower bounds for the shot-noise limited density and temperature measurement uncertainties are calculated for an ideal optical spectrum analyzer and for a planar mirror Fabry-Perot interferometer used in a static, imaging mode. With this technique, a single image of the Rayleigh scattered light can be analyzed to obtain density (or pressure) and temperature. Experimental results are presented for planar measurements taken in a heated air stream
High-speed laser anemometer system for intrarotor flow mapping in turbomachinery
A fringe-type laser anemometer with innovative features is described. The innovative features include: (1) rapid, efficient data acquisition processes, (2) detailed graphic display of data being accumulated, and (3) input laser-beam positioning that allows greater optical access to the intrarotor region. Results are presented that demonstrate the anemometer's capability in flow mapping within a transonic axial-flow compressor rotor
Efficient laser anemometer for intra-rotor flow mapping in turbomachinery
A fringe type laser anemometer is described. Features of the anemometer include; a rapid and efficient data acquisition process; a detailed real time graphic display of the data being accumulated; and input laser beam positioning that maximizes the size of the intrarotor region being mapped. Results are presented that demonstrate the anemometer's capability in flow mapping within a transonic axial flow compressor rotor. A velocity profile, derived from 30,000 measurements along 1000 sequential circumferential positions covering 20 blade passages, was obtained in 30 seconds. The use of fluorescent seed particles allowed flow measurements near the rotor hub and the casing window
Rayleigh-Brillouin Scattering to Determine One-Dimensional Temperature and Number Density Profiles of a Gas Flow Field
Rayleigh-Brillouin spectra for heated nitrogen gas were measured by imaging the output of a Fabry-Perot interferometer onto a CCD array The spectra were compared with the theoretical 6-moment model of Rayleigh-Brillouin scattering convolved with the Fabry-Perot instrument function. Estimates of the temperature and a dimensionless parameter proportional to the number density of the gas as functions of position in the laser beam were calculated by least-squares deviation fits between theory and experiment
Rayleigh-Brillouin Scattering to Determine One-Dimensional Temperature and Number Density Profiles of a Gas Flow Field
Rayleigh-Brillouin spectra for heated nitrogen gas were measured by imaging the output of a Fabry-Perot interferometer onto a CCD array The spectra were compared with the theoretical 6-moment model of Rayleigh-Brillouin scattering convolved with the Fabry-Perot instrument function. Estimates of the temperature and a dimensionless parameter proportional to the number density of the gas as functions of position in the laser beam were calculated by least-squares deviation fits between theory and experiment
Regulation of Corticotropin-Releasing Factor-Binding Protein Expression in Amygdalar Neuronal Cultures
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73102/1/j.1365-2826.1999.00413.x.pd
Time-Average Measurement of Velocity, Density, Temperature, and Turbulence Using Molecular Rayleigh Scattering
Measurement of time-averaged velocity, density, temperature, and turbulence in gas flows using a nonintrusive, point-wise measurement technique based on molecular Rayleigh scattering is discussed. Subsonic and supersonic flows in a 25.4-mm diameter free jet facility were studied. The developed instrumentation utilizes a Fabry-Perot interferometer to spectrally resolve molecularly scattered light from a laser beam passed through a gas flow. The spectrum of the scattered light contains information about velocity, density, and temperature of the gas. The technique uses a slow scan, low noise 16-bit depth CCD camera to record images of the fringes formed by Rayleigh scattered light passing through the interferometer. A kinetic theory model of the Rayleigh scattered light is used in a nonlinear least squares fitting routine to estimate the unknown parameters from the fringe images. The ability to extract turbulence information from the fringe image data proved to be a challenge since the fringe is broadened by not only turbulence, but also thermal fluctuations and aperture effects from collecting light over a range of scattering angles. Figure 1 illustrates broadening of a Rayleigh spectrum typical of flow conditions observed in this work due to aperture effects and turbulence for a scattering angle, chi(sub s), of 90 degrees, f/3.67 collection optics, mean flow velocity, u(sub k), of 300 m/s, and turbulent velocity fluctuations, sigma (sub uk), of 55 m/s. The greatest difficulty in processing the image data was decoupling the thermal and turbulence broadening in the spectrum. To aid in this endeavor, it was necessary to seed the ambient air with smoke and dust particulates; taking advantage of the turbulence broadening in the Mie scattering component of the spectrum of the collected light (not shown in the figure). The primary jet flow was not seeded due to the difficulty of the task. For measurement points lacking particles, velocity, density, and temperature information could reliably be recovered, however the turbulence estimates contained significant uncertainty. Resulting flow parameter estimates are presented for surveys of Mach 0.6, 0.95, and 1.4 jet flows. Velocity, density, and temperature were determined with accuracies of 5 m/s, 1.5%, and 1%, respectively, in flows with no particles present, and with accuracies of 5 m/s, 1-4%, and 2% in flows with particles. Comparison with hotwire data for the Mach 0.6 condition demonstrated turbulence estimates with accuracies of about 5 m/s outside the jet core where Mie scattering from dust/smoke particulates aided in the estimation of turbulence. Turbulence estimates could not be recovered with any significant accuracy for measurement points where no particles were present
Molecular Rayleigh Scattering Techniques Developed for Measuring Gas Flow Velocity, Density, Temperature, and Turbulence
Nonintrusive optical point-wise measurement techniques utilizing the principles of molecular Rayleigh scattering have been developed at the NASA Glenn Research Center to obtain time-averaged information about gas velocity, density, temperature, and turbulence, or dynamic information about gas velocity and density in unseeded flows. These techniques enable measurements that are necessary for validating computational fluid dynamics (CFD) and computational aeroacoustic (CAA) codes. Dynamic measurements allow the calculation of power spectra for the various flow properties. This type of information is currently being used in jet noise studies, correlating sound pressure fluctuations with velocity and density fluctuations to determine noise sources in jets. These nonintrusive techniques are particularly useful in supersonic flows, where seeding the flow with particles is not an option, and where the environment is too harsh for hot-wire measurements
Localization of the corticotropin-releasing hormone receptor gene on mouse Chromosome 11
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47014/1/335_2004_Article_BF00350896.pd
Rayleigh Scattering Diagnostic Used to Measure Velocity and Density Fluctuation Spectra
A new, molecular Rayleigh-scattering-based flow diagnostic developed at the NASA Glenn Research Center has been used for the first time to measure the power spectrum of both gas density and radial velocity components in the plumes of high-speed jets. The objective of the work is to develop an unseeded, nonintrusive dynamic measurement technique for studying turbulent flows in NASA test facilities. This technique provides aerothermodynamic data not previously obtainable. It is particularly important for supersonic flows, where hot wire and pitot probes are difficult to use and disturb the flow under study. The effort is part of the nonintrusive instrumentation development program supporting propulsion research at the NASA Glenn Research Center. In particular, this work is measuring fluctuations in flow velocity, density, and temperature for jet noise studies. These data are valuable to researchers studying the correlation of flow fluctuations with far-field noise. One of the main objectives in jet noise research is to identify noise sources in the jet and to determine their contribution to noise generation. The technique is based on analyzing light scattered from molecules within the jet using a Fabry-Perot interferometer operating in a static imaging mode. The PC-based data acquisition system can simultaneously sample velocity and density data at rates to about 100 kHz and can handle up to 10 million data records. We used this system to interrogate three different jet nozzle designs in a Glenn free-jet facility. Each nozzle had a 25.4-mm exit diameter. One was convergent, used for subsonic flow measurements and to produce a screeching underexpanded jet with a fully expanded Mach number of 1.42. The other nozzles (Mach 1.4 and 1.8) were convergent-divergent types. The radial component of velocity and gas density were simultaneously measured in this work
- …