67 research outputs found

    Microcanonical studies concerning the recent experimental evaluations of the nuclear caloric curve

    Get PDF
    The microcanonical multifragmentation model from [Al. H. Raduta and Ad. R. Raduta, Phys. Rev. C 55, 1344 (1997); 56, 2059 (1997); 59, 323 (1999)] is refined and improved by taking into account the experimental discrete levels for fragments with A6A \le 6 and by including the stage of sequential decay of the primary excited fragments. The caloric curve is reevaluated and the heat capacity at constant volume curve is represented as a function of excitation energy and temperature. The sequence of equilibrated sources formed in the reactions studied by the ALADIN group (197^{197}Au+197^{197}Au at 600, 800 and 1000 MeV/nucleon bombarding energy) is deduced by fitting simultaneously the model predicted mean multiplicity of intermediate mass fragments (MIMFM_{IMF}) and charge asymmetry of the two largest fragments (a12a_{12}) versus bound charge (ZboundZ_{bound}) on the corresponding experimental data. Calculated HeLi isotopic temperature curves as a function of the bound charge are compared with the experimentally deduced ones.Comment: 13 pages, 4 figure

    Isospin Effects in Nuclear Multifragmentation

    Full text link
    We develop an improved Statistical Multifragmentation Model that provides the capability to calculate calorimetric and isotopic observables with precision. With this new model we examine the influence of nuclear isospin on the fragment elemental and isotopic distributions. We show that the proposed improvements on the model are essential for studying isospin effects in nuclear multifragmentation. In particular, these calculations show that accurate comparisons to experimental data require that the nuclear masses, free energies and secondary decay must be handled with higher precision than many current models accord.Comment: 46 pages, 16 figure

    Azimuthal anisotropy and correlations in the hard scattering regime at RHIC

    Get PDF
    Azimuthal anisotropy (v(2)) and two-particle angular correlations of high p(T) charged hadrons have been measured in Au+Au collisions at roots(NN) = 130 GeV for transverse momenta up to 6 GeV/c, where hard processes are expected to contribute significantly. The two-particle angular correlations exhibit elliptic flow and a structure suggestive of fragmentation of high p(T) partons. The monotonic rise of v(2)(p(T)) for p(T) 3 GeV/c, a saturation of v(2) is observed which persists up to p(T) = 6 GeV/c

    Mid-rapidity anti-proton to proton ratio from Au+Au collisions at sNN=130 \sqrt{s_{NN}} = 130 GeV

    Full text link
    We report results on the ratio of mid-rapidity anti-proton to proton yields in Au+Au collisions at \rts = 130 GeV per nucleon pair as measured by the STAR experiment at RHIC. Within the rapidity and transverse momentum range of y<0.5|y|<0.5 and 0.4 <pt<<p_t< 1.0 GeV/cc, the ratio is essentially independent of either transverse momentum or rapidity, with an average of 0.65±0.01(stat.)±0.07(syst.)0.65\pm 0.01_{\rm (stat.)} \pm 0.07_{\rm (syst.)} for minimum bias collisions. Within errors, no strong centrality dependence is observed. The results indicate that at this RHIC energy, although the pp-\pb pair production becomes important at mid-rapidity, a significant excess of baryons over anti-baryons is still present.Comment: 5 pages, 3 figures, accepted by Phys. Rev. Let

    Disappearance of back-to-back high-p(T) hadron correlations in central Au+Au collisions at root s(NN)=200 GeV

    Get PDF
    Azimuthal correlations for large transverse momentum charged hadrons have been measured over a wide pseudorapidity range and full azimuth in Au+Au and p+p collisions at roots(NN)=200 GeV. The small-angle correlations observed in p+p collisions and at all centralities of Au+Au collisions are characteristic of hard-scattering processes previously observed in high-energy collisions. A strong back-to-back correlation exists for p+p and peripheral Au+Au. In contrast, the back-to-back correlations are reduced considerably in the most central Au+Au collisions, indicating substantial interaction as the hard-scattered partons or their fragmentation products traverse the medium

    Midrapidity antiproton-to-proton ratio from Au+Au collisions at root s(NN)=130 GeV (vol 86, pg 4778, 2001)

    Get PDF

    Azimuthal anisotropy of K-S(0) and Lambda+(Lambda)over-bar production at midrapidity from Au plus Au collisions at root s(NN)=130 GeV

    Get PDF
    We report STAR results on the azimuthal anisotropy parameter v(2) for strange particles K-S(0), Lambda, and (&ULambda;) over bar at midrapidity in Au+Au collisions at roots(NN)=130 GeV at the Relativistic Heavy Ion Collider. The value of v(2) as a function of transverse momentum, p(t), of the produced particle and collision centrality is presented for both particles up to p(t)similar to3.0 GeV/c. A strong p(t) dependence in v(2) is observed up to 2.0 GeV/c. The v(2) measurement is compared with hydrodynamic model calculations. The physics implications of the p(t) integrated v(2) magnitude as a function of particle mass are also discussed

    Coherent rho(0) production in ultraperipheral heavy-ion collisions

    Get PDF
    The STAR Collaboration reports the first observation of exclusive rho(0) photoproduction, AuAu-->AuAurho(0), and rho(0) production accompanied by mutual nuclear Coulomb excitation, AuAu-->Au(star)Au(star)rho(0), in ultraperipheral heavy-ion collisions. The rho(0) have low transverse momenta, consistent with coherent coupling to both nuclei. The cross sections at s(NN)=130 GeV agree with theoretical predictions treating rho(0) production and Coulomb excitation as independent processes

    Narrowing of the balance function with centrality in Au plus Au collisions at root s(NN)=130 GeV

    Get PDF
    The balance function is a new observable based on the principle that charge is locally conserved when particles are pair produced. Balance functions have been measured for charged particle pairs and identified charged pion pairs in Au+Au collisions at roots(NN)=130 GeV at the Relativistic Heavy Ion Collider using STAR. Balance functions for peripheral collisions have widths consistent with model predictions based on a superposition of nucleon-nucleon scattering. Widths in central collisions are smaller, consistent with trends predicted by models incorporating late hadronization

    Pion interferometry of root s(NN)=130 GeV Au+Au collisions at RHIC

    Get PDF
    Two-pion correlation functions in An + Au collisions at roots(NN) = 130 GeV have been measured by the STAR (solenoidal tracker at RHIC) detector. The source size extracted by fitting the correlations grows with event multiplicity and decreases with transverse momentum. Anomalously large sizes or emission durations, which have been suggested as signals of quark-gluon plasma formation and rehadronization, are not observed. The Hanbury Brown-Twiss parameters display a weak energy dependence over a broad range in roots(NN)
    corecore