Azimuthal Anisotropy of K_{S}^{0} and $\Lambda+\bar{\Lambda}$ Production at Midrapidity from $\mathbf{A u}+$ Au Collisions at $\sqrt{s_{N N}}=130 \mathrm{GeV}$

C. Adler, ${ }^{11}$ Z. Ahammed, ${ }^{23}$ C. Allgower, ${ }^{12}$ J. Amonett, ${ }^{14}$ B. D. Anderson, ${ }^{14}$ M. Anderson, ${ }^{5}$ G. S. Averichev, ${ }^{9}$ J. Balewski, ${ }^{12}$ O. Barannikova, ${ }^{9,23}$ L. S. Barnby, ${ }^{14}$ J. Baudot, ${ }^{13}$ S. Bekele, ${ }^{20}$ V.V. Belaga, ${ }^{9}$ R. Bellwied, ${ }^{31}$ J. Berger, ${ }^{11}$ H. Bichsel, ${ }^{30}$ A. Billmeier, ${ }^{31}$ L. C. Bland, ${ }^{2}$ C. O. Blyth, ${ }^{3}$ B. E. Bonner, ${ }^{24}$ A. Boucham, ${ }^{26}$ A. Brandin, ${ }^{18}$ A. Bravar, ${ }^{2}$ R.V. Cadman, ${ }^{1}$ H. Caines, ${ }^{20}$ M. Calderón de la Barca Sánchez, ${ }^{2}$ A. Cardenas, ${ }^{23}$ J. Carroll, ${ }^{15}$ J. Castillo, ${ }^{26}$ M. Castro, ${ }^{31}$ D. Cebra, ${ }^{5}$ P. Chaloupka, ${ }^{20}$ S. Chattopadhyay, ${ }^{31}$ Y. Chen, ${ }^{6}$ S. P. Chernenko, ${ }^{9}$ M. Cherney, ${ }^{8}$ A. Chikanian, ${ }^{33}$ B. Choi, ${ }^{28}$ W. Christie, ${ }^{2}$ J. P. Coffin, ${ }^{13}$ T. M. Cormier, ${ }^{31}$ J. G. Cramer, ${ }^{30}$ H. J. Crawford, ${ }^{4}$ W. S. Deng, ${ }^{2}$ A. A. Derevschikov, ${ }^{22}$ L. Didenko, ${ }^{2}$ T. Dietel, ${ }^{11}$ J. E. Draper, ${ }^{5}$ V. B. Dunin, ${ }^{9}$ J. C. Dunlop, ${ }^{33}$ V. Eckardt, ${ }^{16}$ L. G. Efimov, ${ }^{9}$ V. Emelianov, ${ }^{18}$ J. Engelage, ${ }^{4}$ G. Eppley, ${ }^{24}$ B. Erazmus, ${ }^{26}$ P. Fachini, ${ }^{2}$ V. Faine, ${ }^{2}$ K. Filimonov, ${ }^{15}$ E. Finch, ${ }^{33}$ Y. Fisyak, ${ }^{2}$ D. Flierl, ${ }^{11}$
K. J. Foley, ${ }^{2}$ J. Fu, ${ }^{15,32}$ C. A. Gagliardi, ${ }^{27}$ N. Gagunashvili, ${ }^{9}$ J. Gans, ${ }^{33}$ L. Gaudichet, ${ }^{26}$ M. Germain, ${ }^{13}$ F. Geurts, ${ }^{24}$ V. Ghazikhanian, ${ }^{6}$ O. Grachov, ${ }^{31}$ V. Grigoriev, ${ }^{18}$ M. Guedon, ${ }^{13}$ E. Gushin, ${ }^{18}$ T. J. Hallman, ${ }^{2}$ D. Hardtke, ${ }^{15}$ J. W. Harris, ${ }^{33}$ T.W. Henry, ${ }^{27}$ S. Heppelmann, ${ }^{21}$ T. Herston, ${ }^{23}$ B. Hippolyte, ${ }^{13}$ A. Hirsch, ${ }^{23}$ E. Hjort, ${ }^{15}$ G. W. Hoffmann, ${ }^{28}$ M. Horsley, ${ }^{33}$ H. Z. Huang, ${ }^{6}$ T. J. Humanic, ${ }^{20}$ G. Igo, ${ }^{6}$ A. Ishihara, ${ }^{28}$ Yu. I. Ivanshin, ${ }^{10}$ P. Jacobs, ${ }^{15}$ W.W. Jacobs, ${ }^{12}$ M. Janik, ${ }^{29}$ I. Johnson,,${ }^{15}$ P. G. Jones, ${ }^{3}$ E. G. Judd, ${ }^{4}$ M. Kaneta, ${ }^{15}$ M. Kaplan, ${ }^{7}$ D. Keane, ${ }^{14}$ J. Kiryluk, ${ }^{6}$ A. Kisiel, ${ }^{29}$ J. Klay, ${ }^{15}$ S. R. Klein, ${ }^{15}$ A. Klyachko, ${ }^{12}$ A. S. Konstantinov, ${ }^{22}$ M. Kopytine, ${ }^{14}$ L. Kotchenda, ${ }^{18}$ A. D. Kovalenko, ${ }^{9}$ M. Kramer, ${ }^{19}$ P. Kravtsov, ${ }^{18}$ K. Krueger, ${ }^{1}$ C. Kuhn, ${ }^{13}$ A. I. Kulikov, ${ }^{9}$ G. J. Kunde, ${ }^{33}$ C. L. Kunz, ${ }^{7}$ R. Kh. Kutuev, ${ }^{10}$ A. A. Kuznetsov, ${ }^{9}$ L. Lakehal-Ayat, ${ }^{26}$ M. A. C. Lamont, ${ }^{3}$ J. M. Landgraf, ${ }^{2}$ S. Lange, ${ }^{11}$ C. P. Lansdell, ${ }^{28}$ B. Lasiuk, ${ }^{33}$ F. Laue, ${ }^{2}$ A. Lebedev, ${ }^{2}$ R. Lednický, ${ }^{9}$ V. M. Leontiev, ${ }^{22}$ M. J. LeVine, ${ }^{2}$ Q. Li, ${ }^{31}$ S. J. Lindenbaum, ${ }^{19}$ M. A. Lisa, ${ }^{20}$ F. Liu, ${ }^{32}$ L. Liu, ${ }^{32}$ Z. Liu, ${ }^{32}$ Q. J. Liu, ${ }^{30}$ T. Ljubicic, ${ }^{2}$ W. J. Llope,,24 G. LoCurto, ${ }^{16}$ H. Long, ${ }^{6}$ R. S. Longacre, ${ }^{2}$ M. Lopez-Noriega, ${ }^{20}$ W. A. Love, ${ }^{2}$ T. Ludlam, ${ }^{2}$ D. Lynn, ${ }^{2}$ J. Ma, ${ }^{6}$ R. Majka, ${ }^{33}$ S. Margetis, ${ }^{14}$ C. Markert, ${ }^{33}$ L. Martin, ${ }^{26}$ J. Marx, ${ }^{15}$ H. S. Matis, ${ }^{15}$ Yu. A. Matulenko, ${ }^{22}$ T. S. McShane, ${ }^{8}$ F. Meissner, ${ }^{15}$ Yu. Melnick, ${ }^{22}$ A. Meschanin, ${ }^{22}$ M. Messer, ${ }^{2}$ M. L. Miller, ${ }^{33}$ Z. Milosevich, ${ }^{7}$ N. G. Minaev, ${ }^{22}$ J. Mitchell, ${ }^{24}$ V. A. Moiseenko, ${ }^{10}$ C. F. Moore, ${ }^{28}$ V. Morozov, ${ }^{15}$ M. M. de Moura, ${ }^{31}$ M. G. Munhoz, ${ }^{25}$ J. M. Nelson, ${ }^{3}$ P. Nevski, ${ }^{2}$ V. A. Nikitin, ${ }^{10}$ L. V. Nogach, ${ }^{22}$ B. Norman, ${ }^{14}$ S. B. Nurushev, ${ }^{22}$ G. Odyniec, ${ }^{15}$ A. Ogawa, ${ }^{21}$ V. Okorokov, ${ }^{18}$ M. Oldenburg, ${ }^{16}$ D. Olson, ${ }^{15}$ G. Paic, ${ }^{20}$ S. U. Pandey, ${ }^{31}$ Y. Panebratsev, ${ }^{9}$ S. Y. Panitkin, ${ }^{2}$ A. I. Pavlinov, ${ }^{31}$ T. Pawlak, ${ }^{29}$ V. Perevoztchikov, ${ }^{2}$ W. Peryt, ${ }^{29}$ V. A Petrov, ${ }^{10}$ M. Planinic, ${ }^{12}$ J. Pluta, ${ }^{29}$ N. Porile, ${ }^{23}$ J. Porter, ${ }^{2}$ A. M. Poskanzer, ${ }^{15}$ E. Potrebenikova, ${ }^{9}$ D. Prindle, ${ }^{30}$ C. Pruneau, ${ }^{31}$ J. Putschke, ${ }^{16}$ G. Rai, ${ }^{15}$ G. Rakness, ${ }^{12}$ O. Ravel, ${ }^{26}$ R. L. Ray,${ }^{28}$ S.V. Razin,,${ }^{9,12}$ D. Reichhold, ${ }^{8}$ J. G. Reid, ${ }^{30}$ F. Retiere, ${ }^{15}$ A. Ridiger, ${ }^{18}$ H. G. Ritter, ${ }^{15}$ J. B. Roberts, ${ }^{24}$ O.V. Rogachevski, ${ }^{9}$ J. L. Romero, ${ }^{5}$ A. Rose, ${ }^{31}$ C. Roy, ${ }^{26}$ V. Rykov, ${ }^{31}$ I. Sakrejda, ${ }^{15}$ S. Salur, ${ }^{33}$ J. Sandweiss, ${ }^{33}$ A. C. Saulys, ${ }^{2}$ I. Savin, ${ }^{10}$ J. Schambach, ${ }^{28}$ R. P. Scharenberg, ${ }^{23}$ N. Schmitz, ${ }^{16}$ L. S. Schroeder, ${ }^{15}$ A. Schüttauf, ${ }^{16}$ K. Schweda, ${ }^{15}$ J. Seger, ${ }^{8}$ D. Seliverstov, ${ }^{18}$ P. Seyboth, ${ }^{16}$ E. Shahaliev, ${ }^{9}$ K. E. Shestermanov, ${ }^{22}$ S. S. Shimanskii, ${ }^{9}$ V. S. Shvetcov, ${ }^{10}$ G. Skoro, ${ }^{9}$ N. Smirnov, ${ }^{33}$ R. Snellings, ${ }^{15}$ P. Sorensen, ${ }^{6}$ J. Sowinski, ${ }^{12}$ H. M. Spinka, ${ }^{1}$ B. Srivastava, ${ }^{23}$ E. J. Stephenson, ${ }^{12}$ R. Stock, ${ }^{11}$ A. Stolpovsky, ${ }^{31}$ M. Strikhanov, ${ }^{18}$ B. Stringfellow, ${ }^{23}$ C. Struck, ${ }^{11}$ A. A. P. Suaide, ${ }^{31}$ E. Sugarbaker, ${ }^{20}$ C. Suire, ${ }^{2}$ M. Šumbera, ${ }^{20}$ B. Surrow, ${ }^{2}$ T. J. M. Symons, ${ }^{15}$ A. Szanto de Toledo, ${ }^{25}$ P. Szarwas, ${ }^{29}$ A. Tai, ${ }^{6}$ J. Takahashi, ${ }^{25}$ A. H. Tang, ${ }^{14}$ J. H. Thomas, ${ }^{15}$ M. Thompson, ${ }^{3}$ V. Tikhomirov, ${ }^{18}$ M. Tokarev, ${ }^{9}$ M. B. Tonjes, ${ }^{17}$ T. A. Trainor, ${ }^{30}$ S. Trentalange, ${ }^{6}$ R. E. Tribble, ${ }^{27}$ V. Trofimov, ${ }^{18}$ O. Tsai, ${ }^{6}$ T. Ullrich, ${ }^{2}$ D. G. Underwood, ${ }^{1}$
G. Van Buren, ${ }^{2}$ A. M. VanderMolen, ${ }^{17}$ I. M. Vasilevski, ${ }^{10}$ A. N. Vasiliev, ${ }^{22}$ S. E. Vigdor, ${ }^{12}$ S. A. Voloshin, ${ }^{31}$ F. Wang, ${ }^{23}$
H. Ward, ${ }^{28}$ J.W. Watson, ${ }^{14}$ R. Wells, ${ }^{20}$ G. D. Westfall, ${ }^{17}$ C. Whitten, Jr., ${ }^{6}$ H. Wieman, ${ }^{15}$ R. Willson, ${ }^{20}$ S. W. Wissink, ${ }^{12}$ R. Witt, ${ }^{32}$ J. Wood, ${ }^{6}$ N. Xu, ${ }^{15}$ Z. Xu, ${ }^{2}$ A. E. Yakutin, ${ }^{22}$ E. Yamamoto, ${ }^{15}$ J. Yang, ${ }^{6}$ P. Yepes, ${ }^{24}$ V. I. Yurevich, ${ }^{9}$ Y.V. Zanevski, ${ }^{9}$ I. Zborovský, ${ }^{9}$ H. Zhang, ${ }^{33}$ W. M. Zhang, ${ }^{14}$ R. Zoulkarneev, ${ }^{10}$ and A. N. Zubarev ${ }^{9}$
(STAR Collaboration)
${ }^{1}$ Argonne National Laboratory, Argonne, Illinois 60439
${ }^{2}$ Brookhaven National Laboratory, Upton, New York 11973
${ }^{3}$ University of Birmingham, Birmingham, United Kingdom
${ }^{4}$ University of California, Berkeley, California 94720
${ }^{5}$ University of California, Davis, California 95616
${ }^{6}$ University of California, Los Angeles, California 90095
${ }^{7}$ Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
${ }^{8}$ Creighton University, Omaha, Nebraska 68178

${ }^{9}$ Laboratory for High Energy (JINR), Dubna, Russia
${ }^{10}$ Particle Physics Laboratory (JINR), Dubna, Russia
${ }^{11}$ University of Frankfurt, Frankfurt, Germany
${ }^{12}$ Indiana University, Bloomington, Indiana 47408
${ }^{13}$ Institut de Recherches Subatomiques, Strasbourg, France
${ }^{14}$ Kent State University, Kent, Ohio 44242
${ }^{15}$ Lawrence Berkeley National Laboratory, Berkeley, California 94720
${ }^{16}$ Max-Planck-Institut fuer Physik, Munich, Germany
${ }^{17}$ Michigan State University, East Lansing, Michigan 48824
${ }^{18}$ Moscow Engineering Physics Institute, Moscow Russia
${ }^{19}$ City College of New York, New York City, New York 10031
${ }^{20}$ The Ohio State University, Columbus, Ohio 43210
${ }^{21}$ Pennsylvania State University, University Park, Pennsylvania 16802
${ }^{22}$ Institute of High Energy Physics, Protvino, Russia
${ }^{23}$ Purdue University, West Lafayette, Indiana 47907
${ }^{24}$ Rice University, Houston, Texas 77251
${ }^{25}$ Universidade de Sao Paulo, Sao Paulo, Brazil
${ }^{26}$ SUBATECH, Nantes, France
${ }^{27}$ Texas A \& M, College Station, Texas 77843
${ }^{28}$ University of Texas, Austin, Texas 78712
${ }^{29}$ Warsaw University of Technology, Warsaw, Poland
${ }^{30}$ University of Washington, Seattle, Washington 98195
${ }^{31}$ Wayne State University, Detroit, Michigan 48201
${ }^{32}$ Institute of Particle Physics, Wuhan, Hubei 430079 China
${ }^{33}$ Yale University, New Haven, Connecticut 06520
(Received 13 May 2002; published 9 September 2002)

Abstract

We report STAR results on the azimuthal anisotropy parameter v_{2} for strange particles K_{S}^{0}, Λ, and $\bar{\Lambda}$ at midrapidity in $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{s_{N N}}=130 \mathrm{GeV}$ at the Relativistic Heavy Ion Collider. The value of v_{2} as a function of transverse momentum, p_{t}, of the produced particle and collision centrality is presented for both particles up to $p_{t} \sim 3.0 \mathrm{GeV} / c$. A strong p_{t} dependence in v_{2} is observed up to $2.0 \mathrm{GeV} / c$. The v_{2} measurement is compared with hydrodynamic model calculations. The physics implications of the p_{t} integrated v_{2} magnitude as a function of particle mass are also discussed.

DOI: 10.1103/PhysRevLett.89.132301
PACS numbers: 25.75.Ld, 25.75.Dw

Measurements of azimuthal anisotropies in the transverse momentum distribution of particles can probe early stages of ultrarelativistic heavy ion collisions [1-3]. In high-energy nuclear collisions, the initial geometric anisotropy is established from the overlap between the colliding nuclei. The time necessary to build up this spatial anisotropy is believed to be short because the colliding nuclei are highly Lorentz contracted in the center-ofmass system. During a $\sim 5-50 \mathrm{fm} / c$ period, rescattering transfers the initial spatial anisotropy into a momentum anisotropy. This momentum anisotropy manifests itself most strongly in the azimuthal distribution of transverse momenta. The extent to which the initial spatial anisotropy is transformed to the measured momentum anisotropy depends on the initial conditions and the dynamical evolution of the system. In particular, anisotropy measurements for nucleus-nucleus collisions at the Relativistic Heavy Ion Collider (RHIC) energies may provide information about a partonic stage that may exist early in the collision evolution [1,4-8].

The transverse momentum distribution of particles can be described in the form

$$
\begin{equation*}
\frac{d^{2} N}{d p_{t}^{2} d \phi}=\frac{d N}{2 \pi d p_{t}^{2}}\left[1+2 \sum_{n} v_{n} \cos (n \phi)\right] \tag{1}
\end{equation*}
$$

where p_{t} is the transverse momentum of the particle, ϕ is its azimuthal angle with respect to the reaction plane [9,10], and the harmonic coefficients, v_{n}, are anisotropy parameters. The second coefficient v_{2} is called elliptic flow. Recent experimental results from RHIC [11-14] include measurements of \boldsymbol{v}_{2} as a function of collision centrality and p_{t} for charged particles with $p_{t}<$ $2.0 \mathrm{GeV} / c$, and for identified charged pions, kaons, and protons for p_{t} up to $\sim 0.8 \mathrm{GeV} / c$. The degree of the anisotropy transfer from position to momentum distribution depends on the density of the system during its evolution and the scattering cross sections of the particles involved (parton and/or hadron). As a result, recent theoretical work attempted to deduce the initial gluon density from partonic energy loss [6] and the equation of state from hydrodynamic model calculations [5,7].

Most anisotropic flow parameters measured to date are for nonstrange particles [11,12,15-19]. Of the studies for
identified strange particles [12,20-25] most have been at much lower collision energies. At the CERN Super Proton Synchrotron (SPS), quantitative differences between multistrange baryons and nonstrange hadrons were observed in transverse radial flow in $\mathrm{Pb}+\mathrm{Pb}$ collisions at $\sqrt{s_{N N}}=17 \mathrm{GeV}[26,27]$. A physical scenario in which multistrange baryons do not participate in a common expansion and thus decouple early from the collision system due to their small hadronic cross sections was proposed to explain this observation [28]. This explanation suggests that it may be possible to obtain insight into very early stages of the collisions by studying the elliptic flow of strange particles.

In this Letter, we report the first measurement of the azimuthal anisotropy parameter v_{2} for the strange particles K_{S}^{0}, Λ, and $\bar{\Lambda}$ from $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{s_{N N}}=$ 130 GeV . Our measurement of \boldsymbol{v}_{2} for different centralities as a function of p_{t} using the Solenoidal Tracker at RHIC (STAR) extends to a p_{t} of about $3.0 \mathrm{GeV} / c$, much higher than previously measured for identified charged pions, kaons, and protons [12].

The STAR detector [29] consists of several subsystems, including a Time Projection Chamber (TPC) [30], in a large solenoidal magnet. For collisions in its center, the TPC measures charged tracks in the pseudorapidity range $|\eta|<1.5$ with 2π azimuthal coverage. During the year 2000 data taking the STAR magnet operated with a 0.25 Tesla field, allowing tracking of particles with $p_{t}>$ $0.075 \mathrm{GeV} / c$. A scintillator barrel surrounding the TPC measures the charged particle multiplicity within $|\eta|<1$ for use as a central trigger. Two zero-degree calorimeters [31], located at $\pm 18.25 \mathrm{~m}$ from the nominal interaction region and subtending an angle $\theta<0.002$ radians, are used in coincidence as a minimum-bias trigger. This analysis uses 201×10^{3} minimum bias and 180×10^{3} central events.

We reconstruct both $K_{S}^{0} \rightarrow \pi^{+}+\pi^{-}$and $\Lambda(\bar{\Lambda}) \rightarrow p+$ $\pi^{-}\left(\bar{p}+\pi^{+}\right)$from their charged daughter tracks detected in the TPC. Tracks are assigned as p, \bar{p}, π^{-}, or π^{+}based on their charge sign and their mean energy loss, $\langle d E / d x\rangle$, in the TPC gas. The mass and the kinematic properties of the K_{S}^{0}, Λ, or $\bar{\Lambda}$ candidates are extracted from the decay vertex geometry and daughter particle kinematics. Figure 1 shows the invariant mass distributions for $\pi^{+} \pi^{-}$candidates showing a K_{S}^{0} mass peak and for $p \pi^{-}$ candidates showing a Λ mass peak. The dashed lines are fits to the background and the peak. We determined that the background is dominated by combinatorial counts by rotating all positive tracks 180° in the transverse plane and reconstructing the K_{S}^{0} and $\Lambda(\bar{\Lambda})$ decay vertices. This procedure destroys all real vertices within our acceptance so that we can describe the combinatorial contribution to the invariant mass distributions. The observed masses, $496 \pm 8 \mathrm{MeV} / c^{2}$ for $\pi^{+} \pi^{-}$and $1116 \pm 4 \mathrm{MeV} / c^{2}$ for $p \pi$, are consistent with accepted values [32] and the widths are determined by the momentum resolution of

FIG. 1 (color online). Invariant mass distributions for $\pi^{+} \pi^{-}$ showing a K_{S}^{0} mass peak (left panel) and for $p \pi^{-}$showing a Λ mass peak (right panel). Fitting results are shown as dashed lines in the figure. For presentation a greater number of events has been used for the Λ plot.
the detector. The particles used for the v_{2} analysis are from the kinematic region of $|y| \leq 1.0$ and $0.2 \leq p_{t} \leq$ $3.2 \mathrm{GeV} / c$ for K_{S}^{0} or $0.3 \leq p_{t} \leq 3.2 \mathrm{GeV} / c$ for $\Lambda+\bar{\Lambda}$, where y is the particle's rapidity. No significant differences in elliptic flow are observed between Λ and $\bar{\Lambda}$, so because of the limited statistics, Λ and $\bar{\Lambda}$ are summed together.

We choose the requirements for the K_{S}^{0} and $\Lambda(\bar{\Lambda})$ daughter candidates to maximize statistics and to eliminate autocorrelations in the event plane calculation. For K_{S}^{0}, we require the daughter candidate tracks to have a distance-of-closest-approach (dca) to the collision vertex $>1.0 \mathrm{~cm}$. For the $\Lambda(\bar{\Lambda})$ reconstruction, we choose pion candidates with a dca $>1.5 \mathrm{~cm}$ and proton candidates with a dca $>0.8 \mathrm{~cm}$. We use the peak in the invariant mass distribution to measure the yield of K_{S}^{0} or $\Lambda+\bar{\Lambda}$ particles for different values of ϕ and p_{t}. Using the ϕ bin center for the value of ϕ, we evaluate v_{2} as a function of p_{t} by calculating $\langle\cos (2 \phi)\rangle$ in different p_{t} intervals. This technique enables us to measure elliptic flow for identified particles beyond the p_{t} region where particle identification via $\langle d E / d x\rangle$ fails [12].

The real reaction plane is not known, but the event plane, an experimental estimator of the true reaction plane, can be calculated from the azimuthal distribution of tracks [11]. To calculate the event plane, we select charged particle tracks with at least 15 measured space points, $0.1<p_{t} \leq 2.0 \mathrm{GeV} / c$ and $|\eta|<1.0$. We also require the ratio of the number of space points to the expected maximum number of space points for each track to be greater than 0.52 , suppressing split tracks from being counted twice. Events are required to have a primary vertex within 75 cm longitudinally of the TPC center. These cuts are similar to those used in Ref. [11], and our analysis is not biased by them.

To avoid possible autocorrelations, tracks used for the K_{S}^{0} or $\Lambda(\bar{\Lambda})$ reconstruction are excluded from the set of tracks used to calculate the event plane. In this analysis, where v_{2} is not calculated on a particle by particle basis,
all tracks that might be used for the reconstruction of K_{S}^{0} or $\Lambda(\bar{\Lambda})$ are excluded from the event plane calculation. Only tracks with a dca $<1.0 \mathrm{~cm}$ are used in the event plane calculation while the K_{S}^{0} vertices do not include these tracks. In the $\Lambda+\bar{\Lambda}$ analysis, since p and \bar{p} candidates are allowed to have a dca $<1.0 \mathrm{~cm}$, all tracks that were assigned as p or \bar{p} candidates, based on their charge sign and $\langle d E / d x\rangle$, are excluded from the event plane calculation.

When the azimuthal anisotropy is evaluated via $v_{2}=$ $\langle\cos (2 \phi)\rangle$, the observed v_{2} must be corrected to account for the imperfect event plane resolution [33]. We estimate the resolution using the method of random subevents [10] and use the relative multiplicity, as in Ref. [11], to measure the event centrality. The maximum resolution for the K_{S}^{0} and $\Lambda+\Lambda$ analysis is found to be 0.681 ± 0.004 and 0.582 ± 0.007, respectively, and is reached in the centrality corresponding to $25 \%-35 \%$ of the measured cross section. The poorer resolution for the $\Lambda+\bar{\Lambda}$ analysis is caused by the exclusion of a greater number of tracks from the event plane calculation as discussed in the previous paragraph.

Elliptic flow as a function of transverse momentum for central and midcentral collisions calculated from $201 \times$ 10^{3} minimum bias and 180×10^{3} central events is shown in Fig. 2. The two particles show a similar p_{t} dependence in the two centrality intervals. The p_{t} dependence is stronger in more peripheral collisions than in the central collisions. A similar dependence was observed for charged particles in $\mathrm{Au}+\mathrm{Au}$ collisions at the same RHIC energy [12].

For this analysis, three main sources contribute to systematic errors in the measured anisotropy parameters: particle identification, background subtraction, and correlations unrelated to the reaction plane (nonflow) such as resonance decays, jets, or Coulomb and Bose-Einstein correlations $[34,35]$. The contribution from the first two sources is estimated by examining the variation in v_{2} after changing several track and event cuts. We estimate that these effects contribute an error of less than ± 0.005 to v_{2}. The contribution to v_{2} from nonflow effects, how-

FIG. 2. Elliptic flow v_{2} as a function of p_{t} for (a) K_{S}^{0} and (b) $\Lambda+\bar{\Lambda}$. Circles and filled squares are for central ($0 \%-11 \%$) and midcentral ($11 \%-45 \%$) collisions, respectively. Error bars shown are statistical errors only.
ever, could be significant, especially in peripheral collisions. A previous study used the correlation of event plane angles from subevents to estimate the magnitude of these contributions [36]. Nonflow effects are assumed to contribute to the first and second harmonic correlations by similar amounts, so the magnitude of the first harmonic correlation sets a limit on the nonflow contributions to v_{2}. That study showed that the nonflow systematic errors for charged particles are typically +0 and -0.005 but are significantly larger in the more peripheral events where the error increases to +0 and -0.035 for the $58 \%-85 \%$ most central events. These estimates are confirmed by measurements of v_{2} using the 4th-order cumulant method, a method that is insensitive to nonflow effects but which leads to larger statistical errors [37]. We assume the systematic errors on v_{2} for the neutral strange particles K_{S}^{0} and $\Lambda+\bar{\Lambda}$ are similar to those found in the analysis of charged particles [12].

To make a comparison with available hydrodynamic model calculations [5], we plot $v_{2}\left(p_{t}\right)$ for both K_{S}^{0} and $\Lambda+\bar{\Lambda}$ from 201×10^{3} minimum-bias collisions in Fig. 3. Also shown in the figure is $v_{2}\left(p_{t}\right)$ for charged hadrons [38]. Within statistical uncertainty, the K_{S}^{0} results are in agreement with the v_{2} of charged kaons (not shown) [12]. We observe that v_{2} for both strange particles increases as a function of p_{t} up to about $1.5 \mathrm{GeV} / c$, similar to the hydrodynamic model prediction. In the higher p_{t} region, however ($p_{t} \geq 2 \mathrm{GeV} / c$), the values of v_{2} seem to saturate. It has been suggested that the shape and height of v_{2} above $2-3 \mathrm{GeV} / c$ in a perturbative QCD model is related to energy loss in an early, high-parton-density stage of the collision [6].

The p_{t} integrated anisotropy parameters for charged hadrons, K_{S}^{0}, and $\Lambda+\bar{\Lambda}$ from minimum-bias collisions are shown in Fig. 4. The integrated values of v_{2} are calculated by parametrizing the yield with the inverse

FIG. 3 (color online). Elliptic flow v_{2} as a function of p_{t} for the strange particles K_{S}^{0} (filled circle) and $\Lambda+\bar{\Lambda}$ (open squares) from minimum-bias $\mathrm{Au}+\mathrm{Au}$ collisions. For comparison, v_{2} of charged hadrons (open circles) is also shown. The lines are from hydrodynamic model calculations [5]. Error bars shown are statistical errors only.

FIG. 4 (color online). Integrated elliptic flow \boldsymbol{v}_{2} as a function of particle mass. The gray band and central line indicates the hydrodynamic model results [5]. Error bars shown are statistical errors only.
slope parameter of exponential fits to the K_{S}^{0} or $\Lambda+\bar{\Lambda}$ transverse mass distributions [38,39]. The integrated v_{2} is insensitive to the upper and lower bounds of the integration. Although the $\boldsymbol{v}_{2}\left(p_{t}\right)$ of $\Lambda+\bar{\Lambda}$ is below the $\boldsymbol{v}_{2}\left(p_{t}\right)$ of K_{S}^{0} for most p_{t}, as shown in Fig. 3, the p_{t} integrated v_{2} values increase with the particle mass. This increase is partly due to the relatively higher mean p_{t} of the $\Lambda+\bar{\Lambda}$ compared to the K_{S}^{0}. In hydrodynamic models, although the spatial geometry of the pressure gradient and the resultant collective velocity are the same for all particles, massive particles tend to gain larger transverse momenta and so develop a larger elliptic flow. The hydrodynamic model calculations [5], shown as a gray band and central line, are, within errors, in agreement with this result. The width of the gray band in Fig. 4 indicates the uncertainties of the model calculation, mostly due to the choice of the freeze-out conditions. The increase of v_{2} with particle mass indicates that significant collective motion, perhaps established early in the collision, is an effective means to transfer geometrical anisotropy to momentum anisotropy. The nature of the particles during this process, however, whether parton or hadron, and the degree of thermalization for strange particles during the collective expansion remains an open issue.

In summary, we have reported the first measurement of the anisotropy parameter, v_{2}, for K_{S}^{0} and $\Lambda+\bar{\Lambda}$, from $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{s_{N N}}=130 \mathrm{GeV}$. The v_{2} values as a function of p_{t} from midcentral collisions are higher at each p_{t} than v_{2} from central collisions. Hydrodynamic model calculations seem to adequately describe elliptic flow of the strange particles up to a p_{t} of $2 \mathrm{GeV} / c$. For p_{t} above $2 \mathrm{GeV} / c$, however, the observed v_{2} seems to saturate whereas hydrodynamic models predict a continued increase with p_{t}. The p_{t} integrated v_{2} as a function of particle mass is consistent with a hydrodynamic picture
where collective motion, established by a pressure gradient, transfers geometrical anisotropy to momentum anisotropy. Although the hadronic scattering cross sections of strange and nonstrange particles may be different, we have yet to see deviations in the measured v_{2} from hydrodynamic calculations at low p_{t} for strange or nonstrange particles. In a possible partonic phase prior to the hadronic epoch, the hadronic scattering cross sections for the final hadrons are not relevant. As such, if the elliptic flow of identified particles proves to be independent of their relative hadronic cross sections, it may be evidence that v_{2} is established during a partonic phase.

We thank P. Huovinen for providing the results of the hydrodynamic model calculations. We thank the RHIC Operations Group and the RHIC Computing Facility at Brookhaven National Laboratory, and the National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory for their support. This work was supported by the Division of Nuclear Physics and the Division of High Energy Physics of the Office of Science of the U.S. Department of Energy, the United States National Science Foundation, the Bundesministerium fuer Bildung und Forschung of Germany, the Institut National de la Physique Nucleaire et de la Physique des Particules of France, the United Kingdom Engineering and Physical Sciences Research Council, Fundacao de Amparo a Pesquisa do Estado de Sao Paulo, Brazil, the Russian Ministry of Science and Technology, and the Ministry of Education of China and the National Natural Science Foundation of China.
[1] H. Sorge, Phys. Rev. Lett. 82, 2048 (1999).
[2] H. Sorge, Phys. Lett. B 402, 251 (1997).
[3] J.-Y. Ollitrault, Phys. Rev. D 46, 229 (1992).
[4] B. Zhang, M. Gyulassy, and C. M. Ko, Phys. Lett. B 455, 45 (1999).
[5] P. Huovinen, P. F. Kolb, U. Heinz, P.V. Ruuskanen, and S. A. Voloshin, Phys. Lett. B 503, 58 (2001).
[6] M. Gyulassy, I. Vitev, and X. N. Wang, Phys. Rev. Lett. 86, 2537 (2001).
[7] D. Teaney, J. Lauret, and E.V. Shuryak, Phys. Rev. Lett. 86, 4783 (2001).
[8] Z.W. Lin and C. M. Ko, Phys. Rev. C 65, 034904 (2002).
[9] S. A. Voloshin and Y. Zhang, Z. Phys. C 70, 665 (1996).
[10] A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C 58, 1671 (1998).
[11] STAR Collaboration, K.H. Ackermann et al., Phys. Rev. Lett. 86, 402 (2001).
[12] STAR Collaboration, C. Adler et al., Phys. Rev. Lett., 87, 182301 (2001).
[13] PHENIX Collaboration, R. A. Lacey et al., Nucl. Phys. A698, 559 (2002).
[14] PHOBOS Collaboration, I. Park et al., Nucl. Phys. A698, 564 (2002).
[15] W. Reisdorf and H. G. Ritter, Annu. Rev. Nucl. Part. Sci. 47, 663 (1997).
[16] N. Herrmann, J. Wessels, and T. Wienold, Annu. Rev. Nucl. Part. Sci. 49, 581 (1999).
[17] E877 Collaboration, J. Barrette et al., Phys. Rev. Lett. 73, 2532 (1994).
[18] EOS Collaboration, S. Wang et al., Phys. Rev. Lett. 76, 3911 (1996).
[19] NA49 Collaboration, H. Appelshäuser et al., Phys. Rev. Lett. 80, 4136 (1998).
[20] FOPI Collaboration, J. Ritman et al., Z. Phys. A 352, 355 (1995); FOPI Collaboration, P. Crochet et al., Phys. Lett. B 486, 6 (2000).
[21] KaoS Collaboration, Y. Shin et al., Phys. Rev. Lett. 81, 1576 (1998).
[22] EOS Collaboration, M. Justice et al., Phys. Lett. B 440, 12 (1998).
[23] E895 Collaboration, P. Chung et al., Phys. Rev. Lett. 85, 940 (2000); E895 Collaboration, P. Chung et al., Phys. Rev. Lett. 86, 2533 (2001).
[24] E877 Collaboration, J. Barrette et al., Phys. Rev. C 63, 014902 (2001).
[25] WA98 Collaboration, M.M. Aggarwal et al., Phys. Lett. B 469, 30 (1999).
[26] NA44 Collaboration, I.G. Bearden et al., Phys. Rev. Lett. 78, 2080 (1997).
[27] WA97 Collaboration, E. Andersen et al., Phys. Lett. B 433, 209 (1998).
[28] H. van Hecke, H. Sorge, and N. Xu, Phys. Rev. Lett. 81, 5764 (1998).
[29] STAR Collaboration, K.H. Ackermann et al., Nucl. Phys. A661, 681c (1999).
[30] H. Wieman et al. IEEE Trans. Nucl. Sci. 44, 671 (1997); W. Betts et al., IEEE Trans. Nucl. Sci. 44, 592 (1997); S. Klein et al., IEEE Trans. Nucl. Sci. 43, 1768 (1996).
[31] C. Adler et al., Nucl. Instrum. Methods Phys. Res., Sect. A 461, 337 (2001)
[32] Particle Data Group, D.E. Groom et al., Eur. Phys. J. C 15, 1 (2000).
[33] R. Snellings, A. Poskanzer, and S. A. Voloshin, STAR Report No. SN0388, 1999; nucl-ex/9904003.
[34] N. Borghini, P. M. Dinh, and J. Y. Ollitrault, Phys. Lett. B 477, 51 (2000).
[35] N. Borghini, P. M. Dinh, and J. Y. Ollitrault, Phys. Rev. C 62, 034902 (2000).
[36] STAR Collaboration, R. Snellings et al., Nucl. Phys. A698, 193 (2002).
[37] STAR Collaboration, A. H. Tang et al., hep-ex/0108029.
[38] STAR Collaboration, M. Lamont et al., J. Phys. G 28, 1721 (2002).
[39] H. Long, Ph.D. thesis, University of California-Los Angeles, 2002.

