93 research outputs found

    Analysis and measurement of internal usability metrics through code annotations

    Full text link
    Nowadays, usability can be meant as an important quality characteristic to be considered throughout the software development process. A great variety of usability techniques have been proposed so far, mostly intended to be applied during analysis, design and final testing phases in software projects. However, little or no attention has been paid to the analysis and measurement of usability in the implementation phase. Most of the time, usability testing is traditionally executed in advanced stages. However, the detection of usability flaws during the implementation is of utmost importance to foresee and prevent problems in the utilization of the software and avoid significant cost increases. In this paper, we propose a feasible solution to analyze and measure usability metrics during the implementation phase. Specifically, we have developed a framework featuring code annotations that provides a systematic evaluation of the usability throughout the source code. These annotations are interpreted by an annotation processor to obtain valuable information and automatically calculate usability metrics at compile time. In addition, an evaluation with 32 participants has been carried out to demonstrate the effectiveness and efficiency of our approach in comparison to the manual process of analyzing and measuring internal usability metrics. Perceived satisfaction was also evaluated, demonstrating that our approach can be considered as a valuable tool for dealing with usability metrics during the implementation phaseThis work was partially supported by the Madrid Research Council (P2018/TCS-4314

    Public Libraries and their audience in 2014

    Get PDF

    \u3ci\u3eCreating Cultural Capital: Cultural Entrepreneurship in Theory, Pedagogy and Practice\u3c/i\u3e

    Get PDF
    Editor: Olaf Kuhlke, Annick Schramme, and René Kooyman Chapter, Examining and reconciling identity issues among artist-entrepreneurs, co-authored by A. Erin Bass, UNO faculty member. In recent years, the global creative economy has experienced unprecedented growth. In tandem with that, considerable research has been conducted to determine what exactly the creative economy is, what occupations are grouped under that name, and how it is to be measured. Organizations on various scales, from the United Nations to local governments, have released “creative” or “cultural” economy reports, developed policies for creative urban renewal, and directed attention to creative place making—the purposeful infusion of creative activity into specific urban environments.Parallel to these research and policy interests, academic institutions and professional organizations have begun to develop training programs for future professionals in the creative and cultural industries. In this book, more than fifty scholars from across the globe shed light on this phenomenon of cultural entrepreneurship. Readers will find conceptual frameworks for building new programs for the creative industries, examples of pedagogical approaches and skills-based training, and concrete examples of program and course implementation.https://digitalcommons.unomaha.edu/facultybooks/1280/thumbnail.jp

    ADAM10 is expressed in human podocytes and found in urinary vesicles of patients with glomerular kidney diseases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The importance of the Notch signaling in the development of glomerular diseases has been recently described. Therefore we analyzed in podocytes the expression and activity of ADAM10, one important component of the Notch signaling complex.</p> <p>Methods</p> <p>By Western blot, immunofluorescence and immunohistochemistry analysis we characterized the expression of ADAM10 in human podocytes, human urine and human renal tissue.</p> <p>Results</p> <p>We present evidence, that differentiated human podocytes possessed increased amounts of mature ADAM10 and released elevated levels of L1 adhesion molecule, one well known substrate of ADAM10. By using specific siRNA and metalloproteinase inhibitors we demonstrate that ADAM10 is involved in the cleavage of L1 in human podocytes. Injury of podocytes enhanced the ADAM10 mediated cleavage of L1. In addition, we detected ADAM10 in urinary podocytes from patients with kidney diseases and in tissue sections of normal human kidney. Finally, we found elevated levels of ADAM10 in urinary vesicles of patients with glomerular kidney diseases.</p> <p>Conclusions</p> <p>The activity of ADAM10 in human podocytes may play an important role in the development of glomerular kidney diseases.</p

    Dynamical Mean-Field Theory and Its Applications to Real Materials

    Full text link
    Dynamical mean-field theory (DMFT) is a non-perturbative technique for the investigation of correlated electron systems. Its combination with the local density approximation (LDA) has recently led to a material-specific computational scheme for the ab initio investigation of correlated electron materials. The set-up of this approach and its application to materials such as (Sr,Ca)VO_3, V_2O_3, and Cerium is discussed. The calculated spectra are compared with the spectroscopically measured electronic excitation spectra. The surprising similarity between the spectra of the single-impurity Anderson model and of correlated bulk materials is also addressed.Comment: 20 pages, 9 figures, invited paper for the JPSJ Special Issue "Kondo Effect - 40 Years after the Discovery"; final version, references adde

    The Kondo Resonance in Electron Spectroscopy

    Full text link
    The Kondo resonance is the spectral manifestation of the Kondo properties of the impurity Anderson model, and also plays a central role in the dynamical mean-field theory (DMFT) for correlated electron lattice systems. This article presents an overview of electron spectroscopy studies of the resonance for the 4f electrons of cerium compounds, and for the 3d electrons of V_2O_3, including beginning efforts at using angle resolved photoemission to determine the k-dependence of the resonance. The overview includes the comparison and analysis of spectroscopy data with theoretical spectra as calculated for the impurity model and as obtained by DMFT, and the Kondo volume collapse calculation of the cerium alpha-gamma phase transition boundary, with its spectroscopic underpinnings.Comment: 32 pages, 11 figures, 151 references; paper for special issue of J. Phys. Soc. Jpn. on "Kondo Effect--40 Years after the Discovery

    Tracking of autologous adipose tissue-derived mesenchymal stromal cells with in vivo magnetic resonance imaging and histology after intralesional treatment of artificial equine tendon lesions - a pilot study

    Get PDF
    Background: Adipose tissue-derived mesenchymal stromal cells (AT-MSCs) are frequently used to treat equine tendinopathies. Up to now, knowledge about the fate of autologous AT-MSCs after intralesional injection into equine superficial digital flexor tendons (SDFTs) is very limited. The purpose of this study was to monitor the presence of intralesionally injected autologous AT-MSCs labelled with superparamagnetic iron oxide (SPIO) nanoparticles and green fluorescent protein (GFP) over a staggered period of 3 to 9 weeks with standing magnetic resonance imaging (MRI) and histology. Methods: Four adult warmblood horses received a unilateral injection of 10 × 106 autologous AT-MSCs into surgically created front-limb SDFT lesions. Administered AT-MSCs expressed lentivirally transduced reporter genes for GFP and were co-labelled with SPIO particles in three horses. The presence of AT-MSCs in SDFTs was evaluated by repeated examinations with standing low-field MRI in two horses and post-mortem in all horses with Prussian blue staining, fluorescence microscopy and with immunofluorescence and immunohistochemistry using anti-GFP antibodies at 3, 5, 7 and 9 weeks after treatment. Results: AT-MSCs labelled with SPIO particles were detectable in treated SDFTs during each MRI in T2*- and T1-weighted sequences until the end of the observation period. Post-mortem examinations revealed that all treated tendons contained high numbers of SPIO- and GFP-labelled cells. Conclusions: Standing low-field MRI has the potential to track SPIO-labelled AT-MSCs successfully. Histology, fluorescence microscopy, immunofluorescence and immunohistochemistry are efficient tools to detect labelled AT-MSCs after intralesional injection into surgically created equine SDFT lesions. Intralesional injection of 10 × 106 AT-MSCs leads to the presence of high numbers of AT-MSCs in and around surgically created tendon lesions for up to 9 weeks. Integration of injected AT-MSCs into healing tendon tissue is an essential pathway after intralesional administration. Injection techniques have to be chosen deliberately to avoid reflux of the cell substrate injected. In vivo low-field MRI may be used as a non-invasive tool to monitor homing and engraftment of AT-MSCs in horses with tendinopathy of the SDFT

    On the relationship between individual and population health

    Get PDF
    The relationship between individual and population health is partially built on the broad dichotomization of medicine into clinical medicine and public health. Potential drawbacks of current views include seeing both individual and population health as absolute and independent concepts. I will argue that the relationship between individual and population health is largely relative and dynamic. Their interrelated dynamism derives from a causally defined life course perspective on health determination starting from an individual’s conception through growth, development and participation in the collective till death, all seen within the context of an adaptive society. Indeed, it will become clear that neither individual nor population health is identifiable or even definable without informative contextualization within the other. For instance, a person’s health cannot be seen in isolation but must be placed in the rich contextual web such as the socioeconomic circumstances and other health determinants of where they were conceived, born, bred, and how they shaped and were shaped by their environment and communities, especially given the prevailing population health exposures over their lifetime. We cannot discuss the “what” and “how much” of individual and population health until we know the cumulative trajectories of both, using appropriate causal language

    Molecular medicine and concepts of disease: the ethical value of a conceptual analysis of emerging biomedical technologies

    Get PDF
    Although it is now generally acknowledged that new biomedical technologies often produce new definitions and sometimes even new concepts of disease, this observation is rarely used in research that anticipates potential ethical issues in emerging technologies. This article argues that it is useful to start with an analysis of implied concepts of disease when anticipating ethical issues of biomedical technologies. It shows, moreover, that it is possible to do so at an early stage, i.e. when a technology is only just emerging. The specific case analysed here is that of ‘molecular medicine’. This group of emerging technologies combines a ‘cascade model’ of disease processes with a ‘personal pattern’ model of bodily functioning. Whereas the ethical implications of the first are partly familiar from earlier—albeit controversial—forms of preventive and predictive medicine, those of the second are quite novel and potentially far-reaching
    corecore