2,093 research outputs found

    Modulation of C1-Inhibitor and Plasma Kallikrein Activities by Type IV Collagen

    Get PDF
    The contact system of coagulation can be activated when in contact with biomaterials. As collagen is being tested in novel biomaterials in this study, we have investigated how type IV collagen affects plasma kallikrein and C1-inhibitor. Firstly, we showed C1-inhibitor binds to type IV collagen with a Kd of 0.86 ΌM. The effects of type IV collagen on plasma kallikrein, factor XIIa, and ÎČ-factor XIIa activity and on C1-inhibitor function were determined. Factor XIIa rapidly lost activity in the presence of type IV collagen, whereas plasma kallikrein and ÎČ-factor XIIa were more stable. The rate of inhibition of plasma kallikrein by C1-inhibitor was decreased by type IV collagen in a dose-dependent manner. These studies could be relevant to the properties of biomaterials, which contain collagen, and should be considered in the testing for biocompatibility

    A proposal for a comprehensive grading of Parkinson's disease severity combining motor and non-motor assessments: meeting an unmet need.

    Get PDF
    Non-motor symptoms are present in Parkinson's disease (PD) and a key determinant of quality of life. The Non-motor Symptoms Scale (NMSS) is a validated scale that allows quantifying frequency and severity (burden) of NMS. We report a proposal for using NMSS scores to determine levels of NMS burden (NMSB) and to complete PD patient classification

    Ambroxol effects in glucocerebrosidase and -synuclein transgenic mice

    Get PDF
    Objective. Gaucher disease is caused by mutations in the glucocerebrosidase 1 gene that result in deficiency of the lysosomal enzyme glucocerebrosidase. Both homozygous and heterozygous glucocerebrosidase 1 mutations confer an increased risk for developing Parkinson disease. Current estimates indicate that 10 to 25% of Parkinson patients carry glucocerebrosidase 1 mutations. Ambroxol is a small molecule chaperone that has been shown to increase glucocerebrosidase activity in vitro. This study investigated the effect of ambroxol treatment on glucocerebrosidase activity and on α-synuclein and phosphorylated α-synuclein protein levels in mice. Methods. Mice were treated with ambroxol for 12 days. After the treatment, glucocerebrosidase activity was measured in the mouse brain lysates. The brain lysates were also analyzed for α-synuclein and phosphorylated α-synuclein protein levels. Results. Ambroxol treatment resulted in increased brain glucocerebrosidase activity in (1) wild-type mice, (2) transgenic mice expressing the heterozygous L444P mutation in the murine glucocerebrosidase 1 gene, and (3) transgenic mice overexpressing human α-synuclein. Furthermore, in the mice overexpressing human α-synuclein, ambroxol treatment decreased both α-synuclein and phosphorylated α-synuclein protein levels. Interpretation. Our work supports the proposition that ambroxol should be further investigated as a potential novel disease-modifying therapy for treatment of Parkinson disease and neuronopathic Gaucher disease to increase glucocerebrosidase activity and decrease α-synuclein and phosphorylated α-synuclein protein levels

    Effects of ambroxol on the autophagy-lysosome pathway and mitochondria in primary cortical neurons

    Get PDF
    Glucocerebrosidase (GBA1) mutations are the major genetic risk factor for Parkinson's Disease (PD). The pathogenic mechanism is still unclear, but alterations in lysosomal-autophagy processes are implicated due to reduction of mutated glucocerebrosidase (GCase) in lysosomes. Wild-type GCase activity is also decreased in sporadic PD brains. Small molecule chaperones that increase lysosomal GCase activity have potential to be disease-modifying therapies for GBA1-associated and sporadic PD. Therefore we have used mouse cortical neurons to explore the effects of the chaperone ambroxol. This chaperone increased wild-type GCase mRNA, protein levels and activity, as well as increasing other lysosomal enzymes and LIMP2, the GCase transporter. Transcription factor EB (TFEB), the master regulator of the CLEAR pathway involved in lysosomal biogenesis was also increased upon ambroxol treatment. Moreover, we found macroautophagy flux blocked and exocytosis increased in neurons treated with ambroxol. We suggest that ambroxol is blocking autophagy and driving cargo towards the secretory pathway. Mitochondria content was also found to be increased by ambroxol via peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1-α). Our data suggest that ambroxol, besides being a GCase chaperone, also acts on other pathways, such as mitochondria, lysosomal biogenesis, and the secretory pathway

    Glucocerebrosidase activity, cathepsin D and monomeric α-synuclein interactions in a stem cell derived neuronal model of a PD associated GBA1 mutation.

    Get PDF
    The presence of GBA1 gene mutations increases risk for Parkinson's disease (PD), but the pathogenic mechanisms of GBA1 associated PD remain unknown. Given that impaired α-synuclein turnover is a hallmark of PD pathogenesis and cathepsin D is a key enzyme involved in α-synuclein degradation in neuronal cells, we have examined the relationship of glucocerebrosidase (GCase), cathepsin D and monomeric α-synuclein in human neural crest stem cell derived dopaminergic neurons. We found that normal activity of GCase is necessary for cathepsin D to perform its function of monomeric α-synuclein removal from neurons. GBA1 mutations lead to a lower level of cathepsin D protein and activity, and higher level of monomeric α-synuclein in neurons. When GBA1 mutant neurons were treated with GCase replacement or chaperone therapy; cathepsin D protein levels and activity were restored, and monomeric α-synuclein decreased. When cathepsin D was inhibited, GCase replacement failed to reduce monomeric α-synuclein levels in GBA1 mutant neurons. These data indicate that GBA1 gene mutations increase monomeric α-synuclein levels via an effect on lysosomal cathepsin D in neurons

    Valentine Portable Typewriter and Case

    Get PDF
    Introduced on Valentine’s Day with a flurry of advertising, the Olivetti Company’s bright-red portable typewriter was an instant sensation of the Pop Art movement. Ettore Sottsass and Perry King designed valentine to be the “anti-machine machine,” meaning that it functioned as a typewriter but also had a humanized quality lacking in most office equipment. Sottsass noted that his seductive red typewriter was for use “in any place except an office 
 rather to keep amateur poets company on quiet Sundays.” To further differentiate valentine from workaday equipment, Sottsass’s early designs lacked both uppercase type and the bell signaling the end of a typewritten line. Understandably, Olivetti manufactured the typewriter with these necessary features, but the lowercase “v” in the logo above the keyboard recalls the designer’s original intention. 1969https://digitalcommons.risd.edu/risdmuseum_channel/1035/thumbnail.jp

    DNA Methylation of α-Synuclein Intron 1 Is Significantly Decreased in the Frontal Cortex of Parkinson’s Individuals with GBA1 Mutations

    Get PDF
    Parkinson’s disease (PD) is a common movement disorder, estimated to affect 4% of individuals by the age of 80. Mutations in the glucocerebrosidase 1 (GBA1) gene represent the most common genetic risk factor for PD, with at least 7–10% of non-Ashkenazi PD individuals carrying a GBA1 mutation (PD-GBA1). Although similar to idiopathic PD, the clinical presentation of PD-GBA1 includes a slightly younger age of onset, a higher incidence of neuropsychiatric symptoms, and a tendency to earlier, more prevalent and more significant cognitive impairment. The pathophysiological mechanisms underlying PD-GBA1 are incompletely understood, but, as in idiopathic PD, α-synuclein accumulation is thought to play a key role. It has been hypothesized that this overexpression of α-synuclein is caused by epigenetic modifications. In this paper, we analyze DNA methylation levels at 17 CpG sites located within intron 1 and the promoter of the α-synuclein (SNCA) gene in three different brain regions (frontal cortex, putamen and substantia nigra) in idiopathic PD, PD-GBA1 and elderly non-PD controls. In all three brain regions we find a tendency towards a decrease in DNA methylation within an eight CpG region of intron 1 in both idiopathic PD and PD-GBA1. The trend towards a reduction in DNA methylation was more pronounced in PD-GBA1, with a significant decrease in the frontal cortex. This suggests that PD-GBA1 and idiopathic PD have distinct epigenetic profiles, and highlights the importance of separating idiopathic PD and PD-GBA1 cases. This work also provides initial evidence that different genetic subtypes might exist within PD, each characterized by its own pathological mechanism. This may have important implications for how PD is diagnosed and treated

    Bioenergetic Consequences of PINK1 Mutations in Parkinson Disease

    Get PDF
    Background: Mutations of the gene for PTEN-induced kinase 1 (PINK1) are a cause of familial Parkinson's disease (PD). PINK1 protein has been localised to mitochondria and PINK1 gene knockout models exhibit abnormal mitochondrial function. The purpose of this study was to determine whether cells derived from PD patients with a range of PINK1 mutations demonstrate similar defects of mitochondrial function, whether the nature and severity of the abnormalities vary between mutations and correlate with clinical features.Methodology: We investigated mitochondrial bioenergetics in live fibroblasts from PINK1 mutation patients using single cell techniques. We found that fibroblasts from PINK1 mutation patients had significant defects of bioenergetics including reduced mitochondrial membrane potential, altered redox state, a respiratory deficiency that was determined by substrate availability, and enhanced sensitivity to calcium stimulation and associated mitochondrial permeability pore opening. There was an increase in the basal rate of free radical production in the mutant cells. The pattern and severity of abnormality varied between different mutations, and the less severe defects in these cells were associated with later age of onset of PD.Conclusions: The results provide insight into the molecular pathology of PINK1 mutations in PD and also confirm the critical role of substrate availability in determining the biochemical phenotype - thereby offering the potential for novel therapeutic strategies to circumvent these abnormalities
    • 

    corecore