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Abstract

Background: Mutations of the gene for PTEN-induced kinase 1 (PINK1) are a cause of familial Parkinson’s disease (PD). PINK1
protein has been localised to mitochondria and PINK1 gene knockout models exhibit abnormal mitochondrial function. The
purpose of this study was to determine whether cells derived from PD patients with a range of PINK1 mutations
demonstrate similar defects of mitochondrial function, whether the nature and severity of the abnormalities vary between
mutations and correlate with clinical features.

Methodology: We investigated mitochondrial bioenergetics in live fibroblasts from PINK1 mutation patients using single
cell techniques. We found that fibroblasts from PINK1 mutation patients had significant defects of bioenergetics including
reduced mitochondrial membrane potential, altered redox state, a respiratory deficiency that was determined by substrate
availability, and enhanced sensitivity to calcium stimulation and associated mitochondrial permeability pore opening. There
was an increase in the basal rate of free radical production in the mutant cells. The pattern and severity of abnormality
varied between different mutations, and the less severe defects in these cells were associated with later age of onset of PD.

Conclusions: The results provide insight into the molecular pathology of PINK1 mutations in PD and also confirm the critical
role of substrate availability in determining the biochemical phenotype – thereby offering the potential for novel
therapeutic strategies to circumvent these abnormalities.
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Introduction

Mutations in the gene for PTEN-induced kinase 1 (PINK1) are a

cause of autosomal recessive familial Parkinson’s disease (PD) [1].

The clinical phenotype of PINK1 mutant PD patients is often

indistinguishable from idiopathic, sporadic PD [2,3]. Thus the

mechanisms by which mutations in this gene can induce

dopaminergic cell death are a major focus of interest for those

seeking to define the molecular pathogenesis of PD.

The function of the PINK1 protein is not yet defined, although

it is known to be targeted to mitochondria [1], a significant

component of PD pathogenesis [4,5] and is thought to be involved

in protection against free radical generation [6]. PINK1 gene

mutations or PINK1 silencing result in reduced mtDNA levels,

defective ATP production, impaired mitochondrial calcium

handling, and increased free radical generation, which in turn

result in a fall in mitochondrial membrane potential and an

increased susceptibility to apoptosis in neuronal cells, animal

models and patient-derived fibroblasts [7–12]. Recent studies have

also demonstrated that PINK1 can initiate the translocation of

parkin to mitochondria and the induction of mitophagy [13,14].

Overexpression of parkin protein can rescue the effects of a PINK1

mutation in Drosophila and mammalian cells again suggesting that

these two proteins participate in related pathways [15–20].

Many of the studies performed to date to define the role of

PINK1 have involved artificial cell models with overexpression of

wild-type or mutant PINK1, or knock out in cell or animal models,

and few have used endogenous expression of mutant protein in

host cells. We have previously published on the biochemical effects

of mutant PINK1 expression in PD patient fibroblasts [11]. We

have now investigated at the level of the single cell, the bio-

energetic effects of endogenously expressed PINK1 mutations in

PD cells and demonstrate that the consequences depend upon the

specific underlying mutation.

Results and Discussion

Four human fibroblasts with PINK1 mutations - L2123, L2124,

L2126 and L1703 had a significant reduction of mitochondrial

membrane potential (Dym) by 14–27%, with the maximal

decrease in L2126 carrying the 1366C.T mutation by

27.562.1% of control cells (p,0.05; n = 4 experiments;

Figure 1A). However, one mutant line, L2122 carrying the same

1366C.T mutation, showed a significantly increased Dym of
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119.965.3% (n = 68 cells; n,0.001) relative to the control cell

lines C3 and L2132 (Figure 1A).

To investigate how mutations in PINK1 can induce different

effects on the value of Dym, we explored the roles of different

mitochondrial mechanisms important in the maintenance of

membrane potential. In cells with normal oxidative phosphoryla-

tion, Dym is maintained by the proton pumping activity of the

respiratory chain. However if oxidative phosphorylation is

impaired, the F1FO-ATP synthase (complex V) can reverse,

hydrolyse ATP and pump protons across the inner membrane to

maintain Dym [21]. Substrate deprivation, such as has been

described in PINK1 deficient models, can lead to a similar effect

i.e. reversal of complex V [7]. Control cells, C3 (n = 41) and L2132

(n = 16), showed either no response (or a small hyperpolarisation)

in response to complex V inhibition by oligomycin (0.2 mg/ml),

while subsequent inhibition of complex I by rotenone (5 mM)

caused a rapid loss of potential (Figure 1B). This confirms that in

human fibroblast cells, Dym is mainly maintained by respiratory

chain function, and that in our system there is no limit to substrate

availability.

A similar pattern of oligomycin resistance was seen in the L2122

(n = 31) and L2126 (n = 51) 1366C.T cell lines, which had the

highest and lowest resting Dymrespectively (Figure 1 C and F). In

contrast, but in agreement with PINK1 deficient cell models

[7,22], oligomycin caused marked mitochondrial depolarisation in

L2123 (by 37.663.1%, n = 33; figure 1D), L2124 (by 42.163.3%;

n = 38; figure 1E) and L1703 (by 38.762.1%, n = 27; figure 1G).

TMRM fluorescence was then significantly reduced in all cell lines

by the subsequent addition of rotenone (note almost complete

depolarisation in control and L2124 cells). A relatively large

further decrease in signal in response to FCCP in L2122 then

suggested that complex II activity must also be relatively active as a

donor of electrons in these cells.

Provision of additional substrate for complex I (pyruvate/

malate) or complex II (methyl succinate) to PINK1 deficient

neurons caused an increase in Dym and restoration of normal

maintenance of Dym [7]. To investigate if a mutation in PINK1

would induce the same effect on mitochondrial substrate delivery,

we explored the effect of mitochondrial substrates on the

maintenance of Dym in those cell lines that showed depolarisation

in response to oligomycin – L2123, L2124 and L1703. Provision of

additional substrates for complex I and II by application of 5 mM

pyruvate or/and 5 mM methyl succinate to the media increased

Dym and completely prevented oligomycin-induced mitochondrial

depolarisation in 2123 (n = 24), L2124 (n = 28) and L1703 (n = 38)

cells (figure 2 A–C).

Mitochondrial redox state
Given our demonstration above that cells with PINK1

mutations are dependent on the availability of respiratory chain

substrates, we measured the autofluorescence of NADH and

FAD+ as a function of respiratory chain activity and substrate

turnover.

In these experiments, the resting level of NADH autofluores-

cence in the cells was expressed as a ‘redox index’, a function of

the maximally oxidized and maximally reduced signals. These

were estimated from the response to 1 mM FCCP (which

stimulates maximal respiration, completely oxidizing the mito-

chondrial NADH pool) which was taken as 0%, and the response

to 1 mM NaCN (which inhibits respiration, preventing NADH

oxidation, and so promoting maximal NADH reduction and

maximal autofluorescence) which was taken as 100% (Figure 3A).

The total mitochondrial NADH pool was estimated as a difference

in arbitrary (arb) units between minimum fluorescence (after

FCCP application) and maximum autofluorescence (after NaCN)

(figure 3A). The basal redox level in L2122 (31.562.8%; n = 44;

p,0.05), L2123 (27.861.8%; n = 37; p,0.001), L2124

(28.962.6%; n = 29; p,0.001) and L1703 fibroblasts

(23.561.9%; n = 33; p,0.001) was significantly more oxidised

compared to control C3 (62.163.9%, n = 41) and L2132

(54.665.2%; n = 28; Figure 3A–C). Interestingly, the cells with

lowest Dym - L2126 showed the highest redox index (78.966.4%,

n = 47; Figure 3C). Provision of additional substrate - 5 mM

glutamate, induced a significant increase of NADH in L2122,

L2123, L2124 and L1703 cells (Figure 3B, C). The total

mitochondrial pool of NADH was significantly lower in cells with

PINK1 mutations, from 75.664.7% of control, p,0.05 in L2122

to 39.562.8% of control, p,0.001 in L1703 (Figure 3D).

The redox state (FAD) and mitochondrial level of flavoproteins

was estimated in a similar way to NADH (only maximal

oxidation with FCCP was taken as 100%, and maximal reduction

with NaCN as 0%, Figure 4A). The FAD++ based redox state in

L2122 (85.164.1%; n = 44; p,0.05), L2123 (87.666.8%, n = 37;

p,0.05), L2124 (75.865.1%, n = 29) and L1703 (89.967.8%,

n = 33; p,0.001) were significantly more oxidised compare to

control C3 (65.465.3%, n = 41) and L2132 cells (63.565.1%,

n = 28; Figure 4 B–C). Addition of substrate for complex II

(5 mM me-succinate) normalized the redox level in L2122 and

L2124 fibroblasts (Figure 4B–C). Provision of L2123, L2126 and

L1703 fibroblasts with methyl succinate also reduced their redox

level to control values (Figure 4 B–C). The level of the

mitochondrial pool of flavoproteins involved in respiration was

1.55-fold higher in L2122 fibroblasts compare to control

(p,0.001; figure 4D) and lower in L2126 (56.463.2% of control;

p,0.001; Figure 4D). Thus, although L2122 fibroblasts have the

same mild substrate deprivation as other PINK1 mutated cells,

higher activity of the complex II allows them to maintain high

membrane potential.

All the patient cell lines with PINK1 mutations showed an

increased basal rate of reactive oxygen species generation in

mitochondria (figure 5A). The highest rates were observed in

L2123 (165.966.7 of control rate; n = 37; p,0.05), L2124

(164.865.6%; n = 67; p,0.05) and L1703 (169.767.8%, n = 56;

p,0.001). The application of 5 mM rotenone greatly stimulated

ROS production in control cells (1.78-fold increase) but not

substantially in PINK1 mutated cells (L2123, L2124, L1703),

although the increases in L2122 and L2126 were statistically

significant (figure 5A). This suggests that mitochondrial ROS

production in the cells with mutations in PINK1 is already

activated at basal levels due to the limited availability of complex I-

linked substrates.

PINK1 knockout has been shown to result in inhibition of the

mitochondrial Na+/Ca2+-exchanger and mitochondrial calcium

overload [7]. Even a physiological calcium stimulus induced

further overload of mitochondria with calcium and induced

permeability transition pore (PTP) opening and a fall in Dym.

Induction of the calcium signal in fibroblasts by 100 mM ATP

(which stimulates purinoreceptors and the release of calcium from

the endoplasmic reticulum) did not initiate changes in mitochon-

drial membrane potential of control (C3, L2132) or mutant

(L2122, L2123, L2124, L2126 and L1703) cells (n = 3 experi-

ments; data not shown). This suggests that physiological levels of

calcium stimulation may not be sufficient to initiate pathological

PTP opening in fibroblasts.

We employed the technique of UV flash photolysis of cells

incubated with caged calcium (Ca-NP-EGTA) in order to generate

a standard calcium signal free from variations in calcium influx/

release. UV induced flash photolysis produced a rapid [Ca 2+]c
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Figure 1. Characteristics of mitochondrial membrane potential (Dym) in human fibroblasts with PINK1 mutations. A-L2122 fibroblasts
exhibited a 20% increase (p,0.001) in TMRM fluorescence (i,e, an increased Dym) compared to controls. Fibroblasts with PINK1 mutations (L2123,
L2124, L2126 amd L1703) showed a significant decrease in Dym compared to control cells. B–G In control, L2122 and L2126 fibroblasts (B–C, F),
oligomycin did not affect Dym; rotenone induced a partial depolarisation; FCCP induced complete depolarisation. In L2123, L2124 and L1703
fibroblasts (D–E, G), oligomycin caused a mitochondrial depolarisation.
doi:10.1371/journal.pone.0025622.g001
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increase in control fibroblasts C3 (n = 18) and L2132 (n = 32) with

no associated change in Dym (figure 6A–B). L2122 fibroblasts

showed no mitochondrial depolarisation in response to [Ca 2+]c

elevation (figure 6C). However, the same stimulus in fibroblasts

with PINK1 mutations L2123 (n = 23; figure 6 D), L2124 (n = 19;

figure 6E), L2126 (n = 21; figure 6F) and L1703 (n = 18; figure 6G)

resulted in profound mitochondrial depolarisation. Thus, the

enhanced mitochondrial membrane potential of L2122 and the

lower ROS production in L2122 cells compared to other PINK1

mutation lines, increased the threshold for PTP opening and fall in

Dym.

Mutations in the gene for PINK1 are a cause of autosomal

recessive Parkinson’s disease. PINK1 is a mitochondrial protein

and recent studies have indicated that it plays a significant role in

mitochondrial function and calcium homeostasis in particular [7].

These observations were derived from the use of cell culture

knockouts including primary neuronal cultures from transgenic

mouse models of PINK1 deficiency. Previous studies using

PINK1 patient fibroblasts have shown defects of oxidative

phosphorylation and the electron transport chain, and oxidative

stress [9–11]. In this study we have for the first time studied

PINK1 mitochondrial pathophysiology with single cell analysis of

cultured cells derived from patients with PD and PINK1

mutations, in order to dissect the down-stream consequences on

mitochondrial function. These cells represent an important model

system as they enable the study of the biochemical effects of

PINK1 mutations in intact cells devoid of any manipulation of

the PINK1 gene, and in the presence of the host patient genomic

background.

The PINK1 mutant patient cells manifested multiple mitochon-

drial defects that paralleled those identified in the PINK1 knockout

models described above. PINK1 knockdown by siRNA in human

neuroblastoma cells was associated with reduction in glucose

uptake at the plasma membrane [23] and with a reduction in

mitochondrial DNA levels, decreased ATP synthesis and respira-

tory chain activity due to substrate restriction (low glucose), an

increase in oxidative stress and abnormal calcium handling [7,8].

Growth of PINK1 mutant cells in galactose caused mitochondrial

fragmentation [11].

We have found in single fibroblasts that pathological mutations

in PINK1 (L1703, L 2123, L2126) cause a significant reduction in

mitochondrial membrane potential and altered redox state

(NADH level). As in the PINK1 knockouts [7,22], the PINK1

mutant fibroblast mitochondria switch from the production of

ATP, to the consumption of ATP by the F1F0-ATPase in order to

maintain their Dym. Furthermore, as in PINK1 knockouts, this

phenomenon in L1703, L 2123, L2124 and L2126 mutants could

be reversed by the provision of additional respiratory chain

substrates: the increase in respiration in the presence of additional

pyruvate resulted in a concomitant switch in the mechanism of

Dym maintenance from hydrolysis of ATP to production of ATP.

The limitation in mitochondrial substrates seems to be a key point

in PINK1 pathology. The increased activity in complex II

(measured as FAD+ autofluorescence) in L2122 fibroblasts

Figure 2. Effect of mitochondrial substrates on mechanism of maintenance of Dym in human fibroblast with PINK1 mutations.
Application of pyruvate (5 mM) or/and methyl succinate (5 mM) to fibroblasts increased Dym; Substrate provision prevented the oligomycin induced
mitochondrial depolarisation in L2123, L2124 and L1703 fibroblasts.
doi:10.1371/journal.pone.0025622.g002
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compensates for low NADH levels and leads to higher mitochon-

drial membrane potential, and protection against calcium induced

PTP opening.

However, there were differences between the fibroblasts and

neuronal models; we found significantly less cytosolic reactive

oxygen species (ROS) production in PINK1 mutant fibroblasts

compared to PINK1 knockout neurons that may be explained by a

difference in NADPH oxidase activity. This would fit with our

previous observations of normal glutathione levels and no increase

in cytosolic oxidation in PINK1 mutant fibroblast cultures [11].

PINK1 mutant cells with low Dym (L1703, L 2123, L2124 and

L2126) were vulnerable to calcium stimulation and produced PTP

opening (Figure 6). Furthermore, enhanced physiological calcium

stimulation in PINK1 knockout neurons lead to mitochondrial PTP

opening while the calcium stimulus in PINK1 mutant fibroblasts

did not show mitochondrial depolarization. Fibroblast and

neuronal cells are known to differ in their regulation of calcium

homeostasis and in the role of mitochondria in calcium buffering

[24]. Importantly, using artificial calcium stimulation (flash

photolysis) in fibroblasts, we found that this induced opening of

the PTP in cells with pathological mutations (figure 6). Our

experimental conditions have therefore allowed us to demonstrate

a defect in mitochondrial calcium regulation in these mutant cells

that cannot be visualized with physiological stimulation.

Interestingly, the patient with the L2122 mutation had elevated

Dym and lower ROS production and so an increased threshold for

PTP opening and fall in Dym compared to other PINK1 mutation

lines. This patient also had the latest age of onset for PD (age 61 y)

compare to the other PINK1 mutant PD patients. Although L2122

patient cells had the same mild substrate deprivation as other

PINK1 mutated cells, the higher activity of complex II allowed the

L2122 cells to maintain high membrane potential.

These studies have demonstrated that fibroblasts from PD

patients with PINK1 mutations exhibit very similar bio-energetic

mitochondrial abnormalities to knockdown cell models. These

patient cells also show that there is substrate dependent limitation

on ATP synthesis that can be overcome with substrate

replacement or normalization of glucose uptake. This may offer

an interesting opportunity to explore in terms of disease modifying

therapy in these patients, for which there is some precedent in

patients with primary mitochondrial encephalomyopathies [25].

These data also indicate that patients with different PINK1

mutations, but affecting the same domain, can show different

biochemical phenotypes. It is notable that the patient with the

mildest defect of mitochondrial biochemistry (L2122) had the latest

onset of disease. Whether this observation indicates a valid

correlation with disease severity will require further work in

additional patients.

The defects of mitochondrial function in PINK1 mutant patient

cells described here have relevance to the part that PINK1 and

parkin play in the removal of mitochondria by mitophagy [26]. It

has recently been demonstrated in Drosophila and in mammalian

cells that parkin ubiquitinates mitofusins 1 and 2, and this function

is PINK1 dependent [16,27]. This has also recently been

Figure 3. Redox state and NADH level in fibroblasts with PINK1 mutations and control cells. A–B Graphs demonstrate averaged trace of
NADH autofluorescence in control L2132 fibroblasts (A) and L1703 PINK1 mutation (B). Estimation of the %age change in mitochondrial redox level in
control cells – L2132 (A) and cells with mutations in PINK1 (B–C). C-Redox state was estimated as: 0 is response to FCCP (maximal rate of respiration
and lowest level of mitochondrial NADH) and 100% is response to cyanide (inhibition of respiration with no consumption of NADH in mitochondria;
Fibroblasts with PINK1 mutations have lower NADH redox state compared to control fibroblasts (except L2126) that can be normalized by application
of 5 mM glutamate (C). D – Total pool of mitochondrial NADH was also significantly lower in fibroblasts with PINK1 mutations.
doi:10.1371/journal.pone.0025622.g003
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demonstrated in fibroblasts from PD patients with PINK1

mutations [28]. Knockdown of PINK1 causes mitochondrial

dysfunction and accumulation of defective mitochondria. Overall

cellular mitochondrial function can be restored by parkin

overexpression and restoration of mitophagy pathways [16]. Thus,

the abnormalities of energy metabolism and oxidative stress

observed in our PINK1 mutant patient cells will have a deleterious

synergy with the parallel impairment of mitophagy, leading to the

accumulation of defective mitochondria with the consequent

impairment of ATP synthesis and increased free radical produc-

tion. Such effects are likely to contribute to dopaminergic neuronal

cell dysfunction and death.

Methods

Patients
Five patients in this study were diagnosed with PD and their

clinical details have been presented previously [29]. The

mutations in PINK1 and the basic clinical characteristics are

summarized in Table 1. In these studies, patient 2132 served as a

negative control i.e. a family member with no mutation and no

disease (at age 35 years). A further control fibroblast line was used

from an age-matched control at the same passage number as the

PINK1 mutant cells. All analyses were performed and patient

samples obtained with the approval of the local ethics committee

[University of Lubeck] and the written informed consent of the

subjects involved.

Cell culture
Patient and control cells were cultured as previously described

[11].

Figure 4. Level of FAD autofluorescence in fibroblasts with PINK1 mutations and control cells. Quantification of the %age change in
FAD++ fluorescence: 100 is response to FCCP and 0% is response to cyanide, averaged traces for control L2132 and fibroblasts with PINK1 mutation
L2122 presented in A–B. C-Fibroblasts with PINK1 mutations have increased FAD++ fluorescence than controls. This can be reversed by application of
5 mM Me-succinate to PINK1 mutated cells. D- Values of mitochondrial FAD autofluorescence.
doi:10.1371/journal.pone.0025622.g004

Figure 5. Increase in mitochondrial ROS production in
fibroblasts with PINK1 mutations. Fibroblasts with PINK1 muta-
tions displayed a higher basal rate of increase in Mitosox fluorescence,
demonstrating a higher basal production of ROS compared to controls.
Inhibition of complex I with 5 mM rotenone induced a significant
increase in ROS production in control fibroblasts but only a small
increase in ROS production in fibroblasts with PINK1 mutation.
Histogram demonstrates %age values of rate of Mitosox fluorescence
compared to 100% for control (C3) fibroblasts.
doi:10.1371/journal.pone.0025622.g005
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Loading of cells
For measurements of [Ca2+]c and Dym, cells were loaded for

30 min at room temperature with fluo-4 AM in combination with

25 nM tetramethylrhodamine methylester (TMRM) and 0.005%

pluronic acid in a HEPES-buffered salt solution (HBSS) composed

of (mM): 156 NaCl, 3 KCl, 2MgSO4, 1.25 KH2PO4, 2 CaCl2, 10

Figure 6. A rise in [Ca2+]c induces mitochondrial depolarisation in fibroblasts with PINK1 mutations. Arrows mark UV-induced flash
photolysis of cells loaded with Ca-NP-EGTA, fluo-4 and TMRM. In control C3 (A), L2132 (B) and in fibroblast with L2122 mutation (C) demonstrated an
increase in [Ca2+]c in response to flash photolysis, with no change in Dym. In fibroblasts with PINK1 mutations (L2123 –D; L2124 – E; L2126 – F; and
L1703-G), flash photolysis induced an increase in [Ca2+]c with profound depolarisation of the mitochondria.
doi:10.1371/journal.pone.0025622.g006
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glucose and 10 HEPES; pH adjusted to 7.35 with NaOH. For

flash photolysis experiments, caged Ca2+, 10 mM o-nitrophenyl

EGTA, AM (NP-EGTA, AM) was loaded at the same time as the

other indicators.

For measurements of Dym, cells were loaded with 25 nM

TMRM for 30 mins at room temperature and the dye was present

during the experiment. TMRM is used in the redistribution mode

to assess Dym, and therefore a reduction in TMRM fluorescence

represents Dym depolarisation.

For measurement of mitochondrial ROS production, cells were

pre-incubated with MitoSOX (5 mM, Molecular Probes, Eugene,

OR) for 10 mins at room temperature.

Imaging of [Ca2+]c and Dym, ROS and autofluorescence
of NADH and FAD++

Confocal images were obtained using a Zeiss 510 uv-vis CLSM

equipped with a META detection system and a 406oil immersion

objective. The 488 nm Argon laser line was used to excite fluo-4

fluorescence which was measured using a bandpass filter from

505–550 nm. Illumination intensity was kept to a minimum (at

0.1–0.2% of laser output) to avoid phototoxicity and the pinhole

set to give an optical slice of ,2 mm. TMRM and MitoSOX were

excited using the 543 nm laser line and fluorescence measured

using a 560 nm longpass filter. NADH autofluorescence was

excited at 351 and measured at 410 nm. 2-NDBG was excited at

458 nm, and fluorescence was measured at 520 nm. All data

presented were obtained from at least 5 coverslips and 2–3

different cell preparations.

Statistical analysis
Statistical analysis and exponential curve fitting were performed

using Origin 8 (Microcal Software Inc., Northampton, MA)

software. Results are expressed as means 6 standard error of the

mean (S.E.M.).
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