62 research outputs found

    New results on structure of low beta confinement Polywell cusps simulated by comsol multiphysics

    Get PDF
    AbstractThe Inertial electrostatic confinement (IEC) is one of the ways for fusion approaches. It is one of the various methods which can be used to confine hot fusion plasma. The advantage of IEC is that the IEC experiments could be done in smaller size facilities than ITER or NIF, costing less money and moving forward faster. In IEC fusion, we need to trap adequate electrons to confine the desired ion density which is needed for a fusion reactor. Polywell is a device which uses the magnetic cusp system and traps the required amount of electrons for fusion reactions. The purpose of this device is to create a virtual cathode in order to achieve nuclear fusion using inertial electrostatic confinement (Miley and Krupakar Murali, 2014). In this paper, we have simulated the low beta Polywell. Then, we examined the effects of coil spacing, coils current, electron injection energy on confinement time

    Review on Recent Developments in Laser Driven Inertial Fusion

    Get PDF
    Discovery of the laser in 1960 hopes were based on using its very high energy concentration within very short pulses of time and very small volumes for energy generation from nuclear fusion as “Inertial Fusion Energy” (IFE), parallel to the efforts to produce energy from “Magnetic Confinement Fusion” (MCF), by burning deuterium-tritium (DT) in high temperature plasmas to helium. Over the years the fusion gain was increased by a number of magnitudes and has reached nearly break-even after numerous difficulties in physics and technology had been solved. After briefly summarizing laser driven IFE, we report how the recently developed lasers with pulses of petawatt power and picosecond duration may open new alternatives for IFE with the goal to possibly ignite solid or low compressed DT fuel thereby creating a simplified reactor scheme. Ultrahigh acceleration of plasma blocks after irradiation of picosecond (PS) laser pulses of around terawatt (TW) power in the range of 1020 cm/s2 was discovered by Sauerbrey (1996) as measured by Doppler effect where the laser intensity was up to about 1018 W/cm2. This is several orders of magnitude higher than acceleration by irradiation based on thermal interaction of lasers has produced

    Conductivity of the PGT Synthesized by the High Energy Ball Milling (HEBM)

    Get PDF
    Nanocrystalline Pb1−3x/2GdxTiO3 (where x=0.01) abbreviated as PGT has been synthesised by high energy ball milling at room temperature. Milling was continuous and X-ray analysis shows that single phase tetragonal structure of nanocrystalline PGT was formed after 15 h milling. The average crystallite size was found to be 17 nm. The frequency dependent ac conductivity of the PGT ceramic was studied in the range 100–525°C. Complex impedance analysis suggested the dielectric relaxation to be of non-Debye type. The activation energy was found to be 1.04 ev. The mechanism of charge transport in nanocrystalline PGT was successfully explained by correlated hopping model

    Control of the edge plasma modes by hot limiter biasing in the IR-T1 tokamak

    No full text
    Tokamak plasma modes were analyzed using the Fast Fourier Transform (FFT) in presence of hot limiter biasing system in the IR-T1 Tokamak. Fourier analysis is reliable technique for mode detection in tokamaks. For this purpose we used a poloidal array of Mirnov coils and hot limiter biasing system. After Fourier analysis of Mirnov coils data in presence of hot biased limiter, Power Spectral Density (PSD) diagram was plotted. PSD describes how the power of a signal is distributed with frequency. In this contribution we also determined edge safety factor and safety factor from Fourier based derived mode numbers q = m/n. We obtained the maximum MHD activity using power spectrum at the frequency 33 kHz. Also the edge safety factor was determined less than 3, and the values of obtained safety factor from the mode numbers are between 2 ≤ q ≤ 5. Results show that hot limiter biasing can be used for increasing the plasma safety factor.Моды плазмы токамака анализировались с использованием быстрого преобразования Фурье (БПФ) при наличии системы подачи напряжения на горячий лимитер в токамаке IR-T1. Использовалась полоидальная схема расположения катушек Мирнова. С помощью Фурье-анализа данных катушек Мирнова была построена диаграмма спектральной плотности мощности (СПМ), описывающая распределение мощности сигнала с частотой. Были определены величины q на краю плазмы и по данным Фурье-анализа (как отношение мод: q=m/n). Максимум активности МГД оказался на частоте 33 кГц; на краю величина q≤ 3, а найденная из номеров гармоник − 2 ≤ q ≤ 5. Результаты показали, что подача напряжения на лимитер может использоваться для увеличения плазменного коэффициента надежности.Моди плазми токамака аналізувалися з використанням швидкого перетворення Фур'є (ШПФ) за наявності системи подачі напруги на гарячий лімітер у токамаці IR-T1. Використовувалась полоїдальна схема розміщення котушок Мірнова. За допомогою Фур'є-аналізу даних з котушок Мірнова була побудована діаграма спектральної щільності потужності (СЩП), яка описує розподіл потужності сигналу з частотою. Були визначені величини q на краю плазми і по даним Фур'є-аналізу (як відношення мод: q = m/n). Максимум активності МГД виявився на частоті 33 кГц; на краю величина q ≤ 3, а знайдена з номерів гармонік – 2 ≤ q ≤ 5. Результати показали, що подача напруги на лімітер може використовуватися для збільшення плазмового коефіцієнта надійності
    corecore