206 research outputs found

    Multifunctional nanocomposites of poly(vinylidene fluoride) reinforced by carbon nanotubes and magnetite nanoparticles

    Get PDF
    In the present study, the effect of nano magnetite (Fe3O4) content on structural, dielectric/electrical, magnetic and thermal properties of poly(vinylidene fluoride)/carbon nanotubes matrix, is investigated. Nanocomposite films of polyvinylidene fluoride, carbon nanotubes and Fe3O4 nanoparticles were prepared by the twin screw compounding method. Fe3O4, as magnetic inclusions was incorporated into the composites with carbon nanotubes loadings well above the percolation threshold, where conductive networks were formed. Magnetic characterization revealed the ferrimagnetic behavior of nanocomposites, with saturation magnetization values depending on magnetite content. Results obtained from the analysis of Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC) techniques were very informative for the study of the polymorphism and crystallinity in PVDF. The incorporation of Fe3O4 inclusions in PVDF/CNT matrix, gradually increase both electrical conductivity and dielectric permittivity up to 10 wt% Fe3O4 content, while at the higher Fe3O4 content (15 wt%) reduced values were obtained. This behavior, at higher Fe3O4 content, should be possible related to the insulating and barrier role of Fe3O4 nanoparticles

    Triaging Interventional Pain Procedures During COVID-19 or Related Elective Surgery Restrictions: Evidence-Informed Guidance from the American Society of Interventional Pain Physicians (ASIPP)

    Get PDF
    BACKGROUND: The COVID-19 pandemic has worsened the pain and suffering of chronic pain patients due to stoppage of elective interventional pain management and office visits across the United States. The reopening of America and restarting of interventional techniques and elective surgical procedures has started. Unfortunately, with resurgence in some states, restrictions are once again being imposed. In addition, even during the Phase II and III of reopening, chronic pain patients and interventional pain physicians have faced difficulties because of the priority selection of elective surgical procedures.Chronic pain patients require high intensity care, specifically during a pandemic such as COVID-19. Consequently, it has become necessary to provide guidance for triaging interventional pain procedures, or related elective surgery restrictions during a pandemic. OBJECTIVES: The aim of these guidelines is to provide education and guidance for physicians, healthcare administrators, the public and patients during the COVID-19 pandemic. Our goal is to restore the opportunity to receive appropriate care for our patients who may benefit from interventional techniques. METHODS: The American Society of Interventional Pain Physicians (ASIPP) has created the COVID-19 Task Force in order to provide guidance for triaging interventional pain procedures or related elective surgery restrictions to provide appropriate access to interventional pain management (IPM) procedures in par with other elective surgical procedures. In developing the guidance, trustworthy standards and appropriate disclosures of conflicts of interest were applied with a section of a panel of experts from various regions, specialties, types of practices (private practice, community hospital and academic institutes) and groups. The literature pertaining to all aspects of COVID-19, specifically related to epidemiology, risk factors, complications, morbidity and mortality, and literature related to risk mitigation and stratification was reviewed. The evidence -- informed with the incorporation of the best available research and practice knowledge was utilized, instead of a simplified evidence-based approach. Consequently, these guidelines are considered evidence-informed with the incorporation of the best available research and practice knowledge. RESULTS: The Task Force defined the medical urgency of a case and developed an IPM acuity scale for elective IPM procedures with 3 tiers. These included emergent, urgent, and elective procedures. Examples of emergent and urgent procedures included new onset or exacerbation of complex regional pain syndrome (CRPS), acute trauma or acute exacerbation of degenerative or neurological disease resulting in impaired mobility and inability to perform activities of daily living. Examples include painful rib fractures affecting oxygenation and post-dural puncture headaches limiting the ability to sit upright, stand and walk. In addition, urgent procedures include procedures to treat any severe or debilitating disease that prevents the patient from carrying out activities of daily living. Elective procedures were considered as any condition that is stable and can be safely managed with alternatives. LIMITATIONS: COVID-19 continues to be an ongoing pandemic. When these recommendations were developed, different stages of reopening based on geographical regulations were in process. The pandemic continues to be dynamic creating every changing evidence-based guidance. Consequently, we provided evidence-informed guidance. CONCLUSION: The COVID-19 pandemic has created unprecedented challenges in IPM creating needless suffering for pain patients. Many IPM procedures cannot be indefinitely postponed without adverse consequences. Chronic pain exacerbations are associated with marked functional declines and risks with alternative treatment modalities. They must be treated with the concern that they deserve. Clinicians must assess patients, local healthcare resources, and weigh the risks and benefits of a procedure against the risks of suffering from disabling pain and exposure to the COVID-19 virus

    High-isolation antenna array using SIW and realized with a graphene layer for sub-terahertz wireless applications

    Get PDF
    This paper presents the results of a study on developing an effective technique to increase the performance characteristics of antenna arrays for sub-THz integrated circuit applications. This is essential to compensate the limited power available from sub-THz sources. Although conventional array structures can provide a solution to enhance the radiation-gain performance however in the case of small-sized array structures the radiation properties can be adversely affected by mutual coupling that exists between the radiating elements. It is demonstrated here the effectiveness of using SIW technology to suppress surface wave propagations and near field mutual coupling effects. Prototype of 2x3 antenna arrays were designed and constructed on a polyimide dielectric substrate with thickness of 125 mu m for operation across 0.19-0.20 THz. The dimensions of the array were 20x13.5x0.125 mm(3). Metallization of the antenna was coated with 500 nm layer of Graphene. With the proposed technique the isolation between the radiating elements was improved on average by 22.5 dB compared to a reference array antenna with no SIW isolation. The performance of the array was enhanced by transforming the patch to exhibit metamaterial characteristics. This was achieved by embedding the patch antennas in the array with sub-wavelength slots. Compared to the reference array the metamaterial inspired structure exhibits improvement in isolation, radiation gain and efficiency on average by 28 dB, 6.3 dBi, and 34%, respectively. These results show the viability of proposed approach in developing antenna arrays for application in sub-THz integrated circuits

    Study of thermal effects of silicate-containing hydroxyapatites

    Get PDF
    The possibility of modifications of hydroxyapatite silicate ions, from the extracellular fluid prototype solution under near-physiological conditions has been studied. Formation of silicon-structured hydroxyapatite with different extent of substitution of phosphate groups in the silicate group has been established through chemical and X-ray diffraction analyses, FTIR spectroscopy and optical microscopy. The results obtained are in agreement and suggest the possibility of substitution of phosphate groups for silicate groups in the hydroxyapatite structure when introducing different sources of silica, tetraethoxysilane and sodium silicate, in the reaction mixture. Growth in the amount of silicon in Si-HA results in the increase in the thermal stability of the samples. The greatest mass loss occurs at temperatures in the range of 25-400 Β°Π‘ that is caused by the removal of the crystallization and adsorption water and volatile impurities. It is shown that the modified apatites are of imperfect structure and crystallize in a nanocrystalline state

    The MAJORANA DEMONSTRATOR: A Search for Neutrinoless Double-beta Decay of Germanium-76

    Full text link
    The {\sc Majorana} collaboration is searching for neutrinoless double beta decay using 76^{76}Ge, which has been shown to have a number of advantages in terms of sensitivities and backgrounds. The observation of neutrinoless double-beta decay would show that lepton number is violated and that neutrinos are Majorana particles and would simultaneously provide information on neutrino mass. Attaining sensitivities for neutrino masses in the inverted hierarchy region, 15βˆ’5015 - 50 meV, will require large, tonne-scale detectors with extremely low backgrounds, at the level of ∼\sim1 count/t-y or lower in the region of the signal. The {\sc Majorana} collaboration, with funding support from DOE Office of Nuclear Physics and NSF Particle Astrophysics, is constructing the {\sc Demonstrator}, an array consisting of 40 kg of p-type point-contact high-purity germanium (HPGe) detectors, of which ∼\sim30 kg will be enriched to 87% in 76^{76}Ge. The {\sc Demonstrator} is being constructed in a clean room laboratory facility at the 4850' level (4300 m.w.e.) of the Sanford Underground Research Facility (SURF) in Lead, SD. It utilizes a compact graded shield approach with the inner portion consisting of ultra-clean Cu that is being electroformed and machined underground. The primary aim of the {\sc Demonstrator} is to show the feasibility of a future tonne-scale measurement in terms of backgrounds and scalability.Comment: Proceedings for the MEDEX 2013 Conferenc

    Status of the MAJORANA DEMONSTRATOR experiment

    Full text link
    The MAJORANA DEMONSTRATOR neutrinoless double beta-decay experiment is currently under construction at the Sanford Underground Research Facility in South Dakota, USA. An overview and status of the experiment are given.Comment: 8 pages, proceeding from VII International Conference on Interconnections between Particle Physics and Cosmology (PPC 2013), submitted to AIP proceeding
    • …
    corecore