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Abstract 

Nanocomposites of poly (vinylidene fluoride), PVDF, and magnetite (Fe3O4) 

nanoparticles were prepared using the twin screw compounding method and the effect 

of filler concentration (5-15 wt%) on the thermal stability, dielectric properties and 

dielectric strength were investigated. It was observed that the dynamic characteristics 

of crystalline αc- relaxation peak remain almost constant for the composites studied; 

while the activation energy plots almost coincide indicating that the time scale of this 

relaxation process is independent of the Fe3O4 filler loading. Ferrite particles alter 

MWS mechanism behaviour. In the isochronal diagrams of electric modulus dielectric 

function, at the lower ferrite concentration 5 wt% and the lowest frequency 0.1 Hz, 

two contributions to MWS process were clearly detected. For ferrite concentrations 

higher than 5 wt%, seems that the contribution of amorphous-crystalline interfaces to 

the MWS relaxation drastically decreases and their effect is the broadening of MWS 

peak at higher temperatures, while the effect of Fe3O4-PVDF matrix interfaces 

dominate in the formation of MWS relaxation. Herein, the nanocomposites dielectric 

strength performance was investigated by means of switching impulse high voltage 

stressing and AC (50Hz) high voltage; from the results the nanocomposite 

demonstrated high levels of dielectrics strength accompanied with stability of 

performance. 

 

Keywords:  A. polymers, A. interfaces, C. differential scanning calorimetry (DSC),  

C. thermogravimetric analysis (TGA), D. dielectric properties. 
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1. Introduction 

Magnetic nanoparticle/polymer nanocomposites have recently become one of the 

most active research areas in the field of materials science and engineering. The 

electronic, magnetic and optical of these magnetoelectric nanocomposites can be 

exploited in emerging technological applications in various electronic devices [1–11]. 

Among the nanosized magnetic fillers for these magnetoelectric composites, 

magnetite (Fe3O4) is of significant interest owing to its strong magnetic response, 

biocompatiability and low-cost, leading to diverse applications in electronic, 

magnetic, optical, and mechanical devices [12]. For the polymer matrix, 

polyvinylidene fluoride (PVDF) is a suitable semi-crystalline polymer owing to its 

remarkable thermal stability, good chemical resistance and extraordinary pyroelectric 

and piezoelectric properties [13]. These properties combined with its high elasticity, 

relative transparency and easy of processing, make this thermoplastic polymer 

suitable for various technological applications. PVDF shows a complex structure 

including five distinct crystalline phases related to different chain conformations 

designed, known as δγ,β,α, and ε  phases [14,15]. Amongst them, in terms of its 

piezoelectric response,β  phase is the most active one and, to a lesser extent, the γ  

phase. Adding nanoparticles to a matrix such as PVDF can enhance its conductive 

performance and provide advanced response by capitalizing the nature and properties 

of the nanoscale filler. The final properties of these nanocomposites depend, also, on 

parameters such as filler size and content, method of preparation and the dispersion of 

nanoparticles into the polymer matrix [16–20]. 

Thus, the use of PVDF as matrix in nanocomposites is one of the key parameters for a 

wide range of applications. Besides the various crystalline phases, the dielectric 
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response of PVDF is one of the key parameters for applications. Pristine PVDF, 

depending on its polymorph, shows a dielectric constant close to 10 at room 

temperature and two main relaxation processes (αα and αc). The first one, recorded  

around 1 MHz, is associated with the cooperative segmental motions within the main 

chain of the amorphous region during the glass transition (Tg) of the polymer, while 

the second and slower one is associated with the molecular motions within the 

crystalline fraction of the polymer [21,22] or/and in the crystal-amorphous interphase 

region [23]. Moreover, interfacial polarization process plays an important role in neat 

PVDF, in the cases of high dielectric constant applications. Interfacial polarization is 

almost always present in polymer based materials due to the existence of 

heterogeneities. The discontinuity of the dielectric properties implies a trapping of 

charged ionic/polar species in the interfacial regions of the nanocomposite and 

consequently a polarization phenomenon can take place. In composite films of 

PVDF/Fe3O4 fabricated through solvent casting method, it was found that the 

inclusion of nano Fe3O4 significantly enhances the crystallinity of PVDF and the β  

phase contribution [24]. Increased crystallinity enhances, also, the ferrimagnetic 

properties of these composites whereas the latter improves the thermal stability and 

polarization effects. Three-phase, carbon nanotubes or graphene 

nanoplateletes/Fe3O4/PVDF nanocomposites have shown a very promising electrical 

response, which can be exploited in various potential applications in the fields of 

electromagnetic shielding [25] and energy storage capacitors  [26]. 

However, little work has been done in relation to the influence of Fe3O4 nanoparticles 

on the dielectric response of PVDF nanocomposites [27]. The better and more 

thorough investigation of dielectric behavior can lead to adequate design with 
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desirable properties of materials based on PVDF and Fe3O4 nanoparticles. In this 

paper, PVDF-based nanocomposites with varying concentrations of Fe3O4 are 

investigated. The effect of the filler concentration on the thermal response, dielectric 

properties and dielectric strength are discussed, since they constitute the base of the 

various potential applications of these materials. 

 

2. Materials and methods 

2.1 Materials 

Samples composed of PVDF and Fe3O4 nanoparticles with a filler content of 0, 5, 10 

and 15 wt.% of Fe3O4, were prepared using a lab scale twin screw compounder 

(Thermo Scientific) with counter running screws. A PVDF homopolymer SOLEF 

1008 (from Solvay Solexis) with a melt flow index of 8 g/10 min at 230 oC (under a 

load of 2.16 kg) was used as the base polymer. Fe3O4 nanoparticle powder was 

obtained from Sigma-Aldrich with an average particle size of <50 nm and purity 

>98% according to the supplier’s data sheet. For the compounding process, PVDF 

pellets (500 g) were mixed with the suitable weight of Fe3O4 additive and then passed 

through the twin screw extruder. The extruder temperature profile was set at 150 oC 

(at hopper end) with 10 oC incremental changes across the heated barrel with a final 

temperature of 195 oC at the die head. The PVDF-Fe3O4 mixture was fed to the 

counter rotating screw at ~15 rpm feed rate and was moved across the length of the 

screw at 40% torque corresponding to 350 rpm screw speed. Monofilament from the 

die head was then passed through a cooling bath using a set of rollers. Consequently, 

it was passed onto a chopping unit which made homogeneous pellets (~3 mm length) 

from the monofilament. The pellets were then dried overnight at 75 oC to remove the 
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adsorbed water before further processing. The twin screw compounding enables 

higher quality of mixing at lower melt temperatures, thereby avoiding the material 

degradation at higher temperatures. To obtain the PVDF-Fe3O4 thick film samples, 

hot-press technique was utilized wherein ~55 g of the compounded sample was 

pressed in between two flat Al plates at a pressure of 40kg/cm2 for a duration of 2 min 

30 sec and then allowed to cool down under the same applied pressure using a cold 

press. The final sample weight of the PVDF-Fe3O4 thick film samples was ~48 g, with 

the rest of additive mix lost due to the polymer overflow to the outside of the mould. 

The obtained samples were then used as it is without any further processing.  

 

 

2.2 Experimental Methods  

The surface morphology of the samples was examined using scanning electron 

microscopy (SEM) by employing an EVO MA-10 Carl Zeiss system. Thermal 

response and degradation of the PVDF-Fe3O4 systems were studied via 

Thermogravimetric Analysis (TGA) using a TA Q500 instrument (TA Instruments), 

in the temperature range 30-700oC, for which the samples were placed in a platinum 

boat and scans run at 10oC/min under dry Nitrogen atmosphere, while the thermal 

transitions of the samples were investigated by Differential Scanning Calorimetry 

(DSC) using a DSC Q200 (TA instruments).  

The dielectric response of the pristine PVDF matrix and PVDF-Fe3O4 

nanocomposites was assessed by means of Dielectric Relaxation Spectroscopy (DRS). 

The experimental setup for dielectric measurements includes an Alpha-N Frequency 

Response Analyzer, Novotherm system for temperature control, BDS1200 dielectric 
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cell with two gold plated parallel electrodes, and Windata software for controlling the 

whole experimental setup and data acquisition. All devices were supplied by 

Novocontrol Technologies. The frequency range of the applied field was varying from 

10-1 Hz to 107 Hz, in the temperature range of 30-120 oC. Data were recorded under 

isothermal frequency scans with a temperature step of 5oC. The amplitude of the 

frequency dependent voltage was 1V for all the recorded spectra.  

The dielectric strength of the nanocomposites was studied by means of a high voltage 

test transformer (HIGH VOLT GmbH Transformer PEOI 40/100 100kV), controlled 

by a Siemens Control panel. A two stage Marx impulse generator (Haefely Ltd. 

400kV – 1.2kJ) was used to investigate the impulse voltage performance of the 

nanocomposites. A custom-made test cell made of PlexiglasTM filled with natural ester 

oil, having a capacity of 1400ml was connected to the AC high voltage transformer 

through Rogowski electrode configuration. In order to avoid the flashover as well as 

maintain the homogenous electric field, the nanocomposites of dimensions 150 mm x 

90 mm x 1 mm were connected to the Rogowski electrodes and then placed into the 

natural ester dielectric liquid for measurements. 

 

3. Results and discussion 

3.1 Thermal properties 

Fig. 1 shows representative cryo-fractured SEM images of the PVDF-Fe3O4 

nanocomposites containing 5 and 15 wt% Fe3O4 nanoparticles. The presence of Fe3O4 

particles shows a good distribution across the PVDF matrix without significant 

agglomeration. Furthermore, on increasing the Fe3O4 particle concentration to 15 
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wt%, larger agglomerates of Fe3O4 were observed with mean diameter in the range 

~200 nm. 

It is well established that the thermal properties of the nanocomposites are affected by 

the presence of filler particles which lead to the formation of an interfacial layer 

between the nanoparticles and the polymer matrix while affecting the crosslinking 

procedure. The effect of Fe3O4 nanoparticles on thermal stability of the PVDF matrix 

was studied using thermogravimetric analysis. Typical traces of TGA thermograms 

for the pristine PVDF matrix and the PVDF-Fe3O4 composite systems are shown in 

Fig. 2a. The results reveal that all the samples show good thermal stability for 

temperatures up to around 450 oC with a maximum decomposition temperature higher 

than 470 oC (~480 oC) with a significant weight loss occurring between 450-510 oC, 

corresponding to the decomposition of the PVDF matrix. This decomposition 

temperature is the temperature corresponding to the inflection point of the thermal 

degradation curves and is considered as the temperature of the peak of the derivative 

mass loss (DTGA) curve, i.e. the temperature of the maximum reaction (weight loss) 

rate, as shown in Fig. 2a. It can be observed that the nanocomposites display 

enhanced thermal properties. At lower filler loadings (5 wt%), while the degradation 

temperature is marginally lowered, for 10 wt% and 15 wt% composites, not only the 

degradation temperatures became marginally higher (~484 oC for 15wt% composite 

vs. ~481 oC for pristine PVDF), but the degradation peak also becomes narrower. The 

temperature corresponding to 5 % initial mass loss, T 5%, (onset of the TGA curve) is 

indicative of the thermal stability of the samples. The variation of T 5% with filler 

content is shown in Fig. 2b-left axis, wherein the data reveal that the pristine matrix 

shows, generally, lower weight loss onset (i.e. the degradation starts at lower 
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temperatures), as compared to the nanocomposites. In the case of nanocomposites, the 

T 5% temperature is slightly reduced with the increase of the Fe3O4 nanoparticles’ 

content. From the variation of the mass loss rate (dW/dT) curve as a function of the 

filler content, it can be observed that the presence of Fe3O4 nanoparticles enhances the 

mass loss rate. The increasing trend observed for the samples with higher filler 

concentration can be attributed to the fact that the degradation process of the 

nanocomposites is enhanced by the Fe3O4 nanoparticles  [28]. 

DSC measurements reveal a double melting peak in all samples (Fig. 3a) during the 

first heating scan. A main peak around 175 °C and a shoulder around 168 °C were 

observed for the pure PVDF. Generally, the existence of double melting peak is 

attributed to the presence of crystallites of different thickness, variety of crystallites 

perfection, re-melting of crystallites formed during heating or existence of 

polymorphism [24]. During the first cooling scan from melt (Fig. 3b), a single 

crystallization peak was found and the crystallization temperature, Tc, of pure PVDF 

was observed at 138 °C, while for nanocomposites, a narrower crystallization peak 

and a shift of crystallization temperature Tc to higher temperatures (3-5 °C) compared 

to pure PVDF was detected. The increase of Tc upon addition of Fe3O4 is a clear 

indication of their essence as nucleating agents promoting heterogeneous 

crystallization, a feature commonly observed in polymer nanocomposites [29,30], 

while narrowing of the crystallization peak implies a narrower crystallite size 

distribution [31]. Crystallization (Tc) and melting (Tm) temperatures together with the 

degree of crystallinity Xc of each sample are presented in Table I. The degree of 

crystallinity slightly increases by the addition of Fe3O4 even for the lowest 

concentration. For the higher Fe3O4 content, a decrease of the degree of crystallinity 
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was observed.  The reduction in the crystallinity, at highest Fe3O4 content, can be 

attributed to the inhibition effect of Fe3O4 addition on polymer crystal formation, 

similar to what has been observed with various other inorganic fillers. A similar 

reduction in the crystallinity has been observed [32,33]. 

 

3.2 Dielectric response 

The recorded dielectric spectroscopy data was obtained in terms of complex dielectric 

permittivity (ε*) which can be separated into its capacitive and conductive 

components, thus giving the real part of permittivity (ε ′ ) and loss factor (ε ′′ ). The 

complex permittivity itself is defined by the following equation:  

 

( ) ( ) ( )ωεωεωε '''* ⋅−= i                       (1) 

 

where ε' is the real part of permittivity, ε'' is the imaginary part of permittivity and 

fπω 2=  is the angular frequency of the applied electric field. Fig. 4(a) represents the 

frequency dependence of ε ′  for the pristine PVDF as well as the PVDF/Fe3O4 

nanocomposites (at a fixed temperature of 30 oC). It can be clearly observed that the 

dielectric permittivity is dependent on both frequency and filler fraction loading. As 

expected, the dielectric constant for PVDF/Fe3O4 nanocomposites increases with the 

increase in the Fe3O4 filler content, with the pristine PVDF showing a value of 12 (at 

10 Hz) to a maximum value of 15.8 (at 10 Hz) for the 15wt% Fe3O4 nanocomposite 

[34,35]. The ‘‘step- like’’ increase in the ε ′  values observed at ~ 1 MHz, is related to 

micro-scale motions of the polymer chain and can be attributed to the glass transition 

mechanism of PVDF matrix [36] and is denoted as αα -relaxation. For temperatures 
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close to the glass transition temperature, segmental mobility is facilitated as large 

parts of macromolecular chains obtain sufficient thermal energy and dipoles are able 

to follow the alternating field leading to an increase in permittivity values. On the 

other hand, the sharp increase in the low-frequency region (below 1 Hz) is identified 

as the crystalline chain relaxation in PVDF, namely cα -process. It is associated with 

the molecular motions in PVDF crystalline region. The origin of this process is 

attributed to isolated amorphous portions restricted in the crystalline phase [37] or to 

imperfections and defects in the crystalline structure like, discontinuities, chain loops 

at the surface of lamella, and chain twisting [38]. Moreover, Fe3O4 filled samples 

show higher values of dielectric permittivity compared to the pristine PVDF matrix, 

as a result of the incorporation of Fe3O4 particles [34,35]. Similar results have been 

observed in many composites based on PVDF and can be attributed to the increment 

in the dipolar contribution [39,40].  

 

Now, the real and imaginary parts, ε' and ε'' of the complex dielectric function can be 

used to calculate the dielectric loss tangent which is defined by the following 

relationship:  

 

'

''
tan

ε
εδ =                  (2) 

 

Fig. 4(b) shows the isothermal plots of the dielectric loss tangent tan δ as a function of 

frequency, at a fixed temperature 30 oC, for both the PVDF matrix and nanocomposite 

samples. For all the samples, the tan δ takes a value of less than 0.1 across the 

frequency spectrum. At the temperature of 30 oC, two relaxation processes are 
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evident. The faster segmental relaxation shown at frequency ~4 MHz (although not 

well-configured due to limitations of our experimental “window” and instrumental 

constraints) is attributed to the glass-rubber transition relaxation and is denoted as 

αα -relaxation. It is well reported that this high-frequency peak is related to the micro-

Brownian cooperative motions of the main chain backbone and is considered as the 

dielectric manifestation of the glass transition temperature of PVDF [41]. 

 

The presence of Fe3O4 particles, affects only slightly the segmental process (glass-

rubber transition relaxation, αa-process), confirming that the relaxation time and 

length scale of the αa-process are practically unaffected by the filler particles. Similar 

observations have been reported for other polymer composites [42,43]. Also note that 

the magnitude of the αα -mechanism remains almost constant which implies that the 

addition of Fe3O4 particles has no significant influence on the amorphous PVDF 

regions, which contribute to αα -relaxation, and does not apply restrictions to the re-

arrangement of amorphous chains. The slower relaxation peak at about 3 Hz denoted 

as cα -relaxation is associated with the molecular motions in the crystalline region of 

PVDF [44]. While the magnitude of cα -relaxation increases slightly by the addition 

of Fe3O4 particles, the frequency peak of this mechanism is almost unaffected by the 

addition of the filler. Similar effect has been observed in many PVDF-filled 

composites and nanocomposites [27]. It has been reported in the literature [24,32] 

that, the incorporation of nano-sized ferrite particles in the PVDF matrix, reduces 

crystalline α-phase of PVDF. Added Fe3O4 particles interact with the PVDF matrix, 

since they play the role of nuclei for PVDF crystallization. So, the kinetics of 
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crystallization alters in such a way that polar β-phase predominates over non-polar α-

phase favors the improvement of ionic mobility and conductivity too [45]. 

 

Electric modulus (Μ*), defined as the inverse quantity of complex permittivity is 

given by the following relationship:  

 

( ) ( ) ( ) ( ) ( )
( ) ( )

( )
( ) ( )2222 '''

''

'''

'
'''

*
1

*
ωεωε

ωε
ωεωε

ωεωω
ωε

ω
+

⋅+
+

=Μ⋅+Μ==Μ ii      (3) 

 

where ε', Μ' are the real and ε'', Μ'' the imaginary parts of dielectric permittivity and 

electric modulus, respectively. Dielectric permittivity data were transformed via Eq. 

3, to the electric modulus formalism. The electric modulus formalism was introduced 

by McCrum et al. [46] and has been used to study the electrical relaxation phenomena 

polymers [42,47–49]. This formalism is especially used as it excludes phenomena 

such as electrode polarization and space charge injection which leads to high values 

of permittivity and conductivity, especially at high temperatures and low frequencies. 

Examples and extended arguments of the resulting benefits of electric modulus 

presentation have been exhibited and discussed elsewhere [47,50]. 

 

In Fig. 5(a), the comparative plots of the imaginary part of electric modulus (Μ'') 

versus frequency, for the pristine PVDF and PVDF/Fe3O4 nanocomposites at a 

constant temperature (Τ= 100 oC) are shown. The recorded peaks clearly show the 

presence of two relaxation processes. The recorded loss peaks, located in the low and 

intermediate frequency region, are assigned to Maxwell-Wagner-Sillars (MWS) and 

crystalline relaxation mechanism, respectively [36]. The relaxation peak at 
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intermediate frequencies (at about 6 kHz) is identified as the crystalline relaxation (αc) 

as discussed earlier. Note that this mechanism has been observed at lower frequency 

(~3 Hz) at temperature 30 oC, (see Fig. 3(b)). It is well-known that the dielectric 

peaks, being thermal activated processes, shift to a higher frequency with increasing 

temperature. The second peak of the modulus spectra, observed in the low-frequency 

region (10-1–10 Hz), is attributed to MWS interfacial polarization, which is observed 

in heterogeneous materials [48,51,52]. 

 

In polymers and composites, interfacial polarization is present due to the differences 

in the permittivity and conductivity values of the filler and polymer matrix. It is well 

known that the MWS mechanism appears in complex systems exhibiting electrical 

heterogeneity, due to the accumulation of charges at the interfaces between 

amorphous and crystalline regions of the polymer or matrix and filler, where they 

form large dipoles contributing to the achieved polarization [44,53,54]. 

 

The shape and magnitude of the crystalline relaxation peak remains almost constant 

for the studied composites, while it has lower magnitude, compared to the MWS one. 

In the pristine PVDF matrix, the MWS relaxation occurs due to the interface between 

amorphous and crystalline regions, whereas in the PVDF/Fe3O4 nanocomposites, this 

low-frequency mechanism strongly depends on the filler content. The increase of 

Fe3O4 concentration shifts this mechanism to higher frequencies i.e. it becomes faster.  

In Fig. 5(b), for all the systems studied in this work, the loss modulus index (Μ'') as a 

function of temperature, measured at a constant frequency of f= 0.1 Hz is presented. 

This frequency corresponds to a time scale equal to 10 sec, where the DRS has it’s 
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maximum resolution in the present measurements. As a result, the contributions to 

MWS relaxation from different interfaces, which slightly vary in their relaxation 

times, superimpose forming broad peaks. We observe that for the chosen frequency, 

the loss peak position has a quite a wide variation. The peak temperature decreases 

with increasing Fe3O4 content. It varies from about 100 oC (for the pristine PVDF) to 

almost 50 oC (for the sample PVDF+15wt% Fe3O4).  

 

A possible explanation for this interesting result could be following: as mentioned 

earlier, the pristine PVDF matrix shows a MWS type relaxation, which occurs due to 

the interface between the amorphous and the crystalline regions of the polymeric 

matrix. This mechanism has a clear, single maximum value at about 100 oC. Upon the 

addition of Fe3O4 nanoparticles, two different types of interfaces are formed: an 

interface between the crystalline regions and amorphous matrix and an interface 

between the PVDF matrix and the Fe3O4 filler particles. Thus, the incorporation of 

Fe3O4 particles generates a second MWS mechanism, due to the creation of additional 

interfaces between ferrite particles and the PVDF matrix. It is worth mentioning that 

this second additional mechanism for the sample PVDF+5 wt% Fe3O4 lies at a lower 

temperature as compared to the MWS relaxation of the pristine PVDF matrix, being 

faster and characterized by shorter relaxation time. For ferrite concentrations higher 

than 5 wt%, it seems that the contribution of amorphous-crystalline interfaces to the 

MWS relaxation drastically decreases and its effect is manifested in the broadening of 

MWS peak at higher temperatures region. At higher ferrite content, the effect of 

Fe3O4-PVDF matrix interface dominates the formation of MWS relaxation. In fact, 

for the PVDF/Fe3O4 nanocomposites, the ferrite particles seem to influence 
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significantly the MWS mechanism of PVDF matrix, even at the lower filler content. 

In particular, for the 5wt% Fe3O4 sample, these two relaxations overlap each other. 

Τhe peak observed at about 65 oC is attributed to the interfaces between Fe3O4 

particles and the PVDF matrix, while the shoulder at about 95 oC is, unambiguously, 

ascribed to the interfaces between crystalline regions and amorphous PVDF matrix. 

The contribution of Fe3O4 particles is clearly observed, but the contribution from the 

polymer matrix is still remarkable, for the 5wt% Fe3O4 sample. At increased ferrite 

concentrations, the second MWS mechanism, owing to the creation of additional 

interfaces between ferrite particles and the PVDF matrix, dominates and the PVDF 

peak declines, in fact, besides the increase in the interfaces implies an augmentation 

of the interfacial polarization phenomena.   

 

In order to further analyze the molecular dynamics of the observed mechanism and to 

calculate the corresponding activation energies, Arrhenius plots are used as shown in 

Fig. 6. The temperature dependence of a relaxation process can be analyzed by 

plotting the frequency of loss maximum versus the reciprocal temperature. The 

frequency of loss maximum has been obtained from the plots of the imaginary part of 

electric modulus (Μ'') versus frequency at different temperatures, for all the studied 

nanocomposites. In Fig. 6(a), the Arrhenius diagram for the local crystalline αc-

relaxation, associated with the molecular motion in PVDF crystalline regions, is 

presented. Similar plot for MWS process, related to the interfaces between the 

amorphous and crystalline regions in the pristine PVDF matrix, is shown in Fig. 6(b). 

The dynamics of the glass transition mechanism were not analyzed as its 

characteristics are out of the frequency/temperature window of our measurements. It 
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is well known [38,49,55] that the dynamics of both αc - mode and MWS mechanism 

follow linear Arrhenius- type behaviour, given by: 

 

    f f
E

kTmax exp( )= −0      (4) 

 

where fmax is the frequency maximum in the imaginary part of modulus spectra, f0 is 

the pre-exponential factor, k is the Boltzmann constant (k= 1.381×10-23 J/K) and E is 

the activation energy. The calculated activation energy for the observed relaxation 

processes can be found in Table ΙI. 

Filled samples have higher activation energy values for αc- mechanism, compared to 

the pure PVDF matrix. These values are in very good agreement with those found by 

other researches [56,57] in similar composites. We also observe that the activation 

energy plots for the crystalline αc- relaxation almost coincide, which indicates that 

time scale of this relaxation process is independent of the filler loading. Similar result 

has been reported for PVDF/BaTiO3 nanocomposites, too [27]. 

 

The MWS relaxation for the nanocomposites studied shows also Arrhenius-type 

behaviour, indicating that this relaxation is a thermally activated process. However, 

the activation energy of the MWS relaxation is significantly reduced in the 

nanocomposites as compared to the pristine PVDF matrix. For the nanocomposite 

samples, the increase in the Fe3O4 concentration, leads to increased activation energy 

values. That is a clear indication that the ferrite particles alter the MWS mechanism 

behaviour. As the filler concentration increases, the inter-particle distances start to 

reduce, which could have two different effects. The first one is that it increases the 
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quantity of polymer chains with restricted mobility around the filler particles which 

could lead to gradual increase in the activation energy for MWS relaxation [38]. On 

the other hand, the blocking of charges at the filler-polymer matrix interfaces can 

described by charging–discharging of a double layer characterized in analogy by a 

Debye–type length LD [58]. As the filler concentration increases the distance, L, 

between the Fe3O4 nanoparticles becomes smaller resulting in a lower value of MWS 

relaxation time because DMWS L∝τ  [58]. This effect could explain the shift to higher 

frequencies of the MWS mechanism with increasing filler concentration, as the 

content of Fe3O4 nanoparticles increases the MWS relaxation becomes faster.  

 

 

 

3.3 Dielectric strength measurements 

Table III depicts the results of the AC breakdown test measurements for pristine 

PVDF and PVDF/Fe3O4 nanocomposites. Fig. 7 shows a typical representative graph 

demonstrating the breakdown event recorded during the dielectric strength 

measurement. The vide ante discharge is accompanied with a current of 18mA, which 

is decreased while increasing the concentration of the nanoparticles inside the matrix. 

The breakdown stressed nanocomposites were penetrated after the AC test (Fig. 8). 

The AC (50Hz) electric field endurance was in the range of 9-22kV/mm. 

Based on the same custom cell with the Rogowski electrodes configuration, the 

nanocomposites were stressed under an impulse voltage of 200/2500µs according to 

the ASTM D3246-97 standards [59] by means of a two stage Marx impulse voltage 

generator (Haefely Ltd., 400kV – 1.2kJ). The result of the measurement depicted in 
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Fig. 9 demonstrates the impulse test, wherein 90µs breakdown occurs at 41kV. It is of 

great importance that all the studied nanocomposites along with the pristine matrix 

maintain the same impulse voltage breakdown voltage level of 41kV. This is 

interpreted as a stability of the overall performance of the aforementioned 

nanocomposites, despite their nanoparticles’ addition or concentration. 

The breakdown event as depicted per Fig. 9, is identical for all the nanocomposites 

regardless of the filler concentration wherein the time to breakdown was constant in 

the range of 80-95µs, while the maximum impulse voltage withstand level varied 

between 40-42 kV. In addition, there were no pre-breakdown phenomena, such as 

corona or early ionization prior to the breakdown of the nanocomposites. The 

nanocomposites demonstrate a stable dielectric performance and insulating properties 

via the addition of semiconducting nanoparticles, as described from Tanaka [60] 

which is correlated with the proper preparation and fabrication of the nanocomposites.  

 

4. Conclusions 

In conclusions, PVDF/Fe3O4 nanocomposites were prepared by twin screw 

compounder method and characterized. PVDF nanocomposites display enhanced 

thermal properties. At higher Fe3O4 content, the degradation temperatures became 

marginally higher, while the degradation peak becomes narrower. The degree of 

crystallinity slightly increases by the addition of Fe3O4 even for the lowest 

concentration, while for the higher Fe3O4 content a decrease was observed. Two 

dielectric relaxations were extensively studied, the αc-relaxation and MWS interfacial 

polarization. The dynamic characteristics of crystalline αc-relaxation remain almost 

unaffected for the composites, which indicates that time scale of this relaxation 
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process is independent of the Fe3O4 filler loading. The clear contribution of two 

factors that create the MWS process is rising at lowest Fe3O4 concentration and 

maximum time scale resolution of DRS measurements in the present study. For Fe3O4 

content higher than 5 wt%, the contribution of amorphous-crystalline interfaces to the 

MWS relaxation drastically decreases, while the effect of Fe3O4-PVDF matrix 

interfaces dominate in the formation of MWS relaxation. The nanocomposites 

demonstrated an unprecedented stability of performance during the impulse voltage 

stressing, wherein a breakdown voltage level of 40-42kV was preserved regardless the 

nanoparticles concentration; while the nanocomposite maintain high dielectric 

strength properties under AC voltage (utility frequency).   

 

This work received no funding. 
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Figures captions 

Figure 1. SEM images of cryo-fractured PVDF-Fe3O4 samples containing (a) 5 and 

(b) 15 wt% Fe3O4.  

Figure 2. (a) Comparative relative TGA curves as a function of temperature for all 

the nanocomposites studied and differential TGA curves as a function of temperature. 

(b) The temperature corresponding to 5% initial mass loss as a function of the filler 

concentration (left axis) and the maximum weight loss rate as a function of filler 

content for the nanocomposite systems studied (right axis). 

Figure 3. (a) DSC thermograms showing melting during first heating, (b) 

crystallization during cooling. 

Figure 4. Variation of (a) dielectric permittivity and (b) loss tan δ as a function of 

frequency, for all the examined systems, at 30oC.  

Figure 5. Electric modulus loss index as a function of (a) frequency at 100oC and (b) 

temperature at 0.1 Hz, for all the examined systems.  

Figure 6. Arrhenius diagram (a) for the crystalline cα - relaxation and (b) for MWS 

mechanism.  

Figure 7.  AC breakdown event at 69 seconds for the PVDF with 10 wt % Fe3O4 

nanoparticles. 

Figure 8. Digital photographs of the samples after the AC breakdown test; (a) pristine 

PVDF, (b) PVDF/5 wt% Fe3O4, (c) PVDF/10 wt% Fe3O4   and (d) PVDF/15 wt% 

Fe3O4.   

Figure 9.  Indicative switching impulse stressing of the PVDF/10 wt% Fe3O4 

nanocomposites films. 
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Table I. Results from DSC measurements. 

 

 

Sample 

1st Run 2nd Run 

Tm1(
oC) Tm2(

oC) Tc (
oC) 

(Cooling) 

Tm2(
oC) %Xc 

(Heating) 

PVDF 167.7 174.9 137.6 174.3 46 

5% Fe3O4 166.8 173.5 143.1 172.7 47 

10% Fe3O4 166.3 172.8 141.1 173.5 48 

15% Fe3O4 165.7 172.8 141.0 173.0 44 
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Table II. Activation energy values of αc- mode and MWS relaxation for all examined systems.   

 Activation Energy (eV) 

 αc- mode  MWS relaxation 

PVDF 0.90 1.57 

PVDF+5%Fe3O4  0.94 0.50 

PVDF+10%Fe3O4  0.98 0.88 

PVDF+15%Fe3O4  0.94 0.92 
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Table III. Dielectric strength of the understudyied nanocomposites and their matrix with 

thickness 1 mm. 

Nanocomposite Breakdown Voltage (kV) 

Pure PVDF 21.90 

PVDF + 5 wt% Fe3O4 21.75 

PVDF + 10 wt% Fe3O4 17.30 

PVDF + 15 wt% Fe3O4 9.35 
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• At higher Fe3O4 content, the degradation temperatures became marginally higher.  

• In general, the degree of crystallinity slightly increases with Fe3O4. 

• Recorded dielectric relaxations are, αc-relaxation and MWS interfacial polarization.  

• Fe3O4/PVDF nanocomposites demonstrated a breakdown voltage level of 40-42kV. 


