25,586 research outputs found

    Low-energy enhancement of magnetic dipole radiation

    Full text link
    Magnetic dipole strength functions have been deduced from averages of a large number of M1M1 transition strengths calculated within the shell model for the nuclides 90^{90}Zr, 94^{94}Mo, 95^{95}Mo, and 96^{96}Mo. An enhancement of M1M1 strength toward low transition energy has been found for all nuclides considered. Large M1M1 strengths appear for transitions between close-lying states with configurations including proton as well as neutron high-jj orbits that re-couple their spins and add up their magnetic moments coherently. The M1M1 strength function deduced from the calculated M1M1 transition strengths is compatible with the low-energy enhancement found in (3^3He,3^3He') and (d,p)(d,p) experiments. The present work presents for the first time an explanation of the experimental findings

    Null Strings in Schwarzschild Spacetime

    Get PDF
    The null string equations of motion and constraints in the Schwarzschild spacetime are given. The solutions are those of the null geodesics of General Relativity appended by a null string constraint in which the "constants of motion" depend on the world-sheet spatial coordinate. Because of the extended nature of a string, the physical interpretation of the solutions is completely different from the point particle case. In particular, a null string is generally not propagating in a plane through the origin, although each of its individual points is. Some special solutions are obtained and their physical interpretation is given. Especially, the solution for a null string with a constant radial coordinate rr moving vertically from the south pole to the north pole around the photon sphere, is presented. A general discussion of classical null/tensile strings as compared to massless/massive particles is given. For instance, tensile circular solutions with a constant radial coordinate rr do not exist at all. The results are discussed in relation to the previous literature on the subject.Comment: 16 pages, REVTEX, no figure

    Novel Techniques for Constraining Neutron-Capture Rates Relevant for r-Process Heavy-Element Nucleosynthesis

    Full text link
    The rapid-neutron capture process (rr process) is identified as the producer of about 50\% of elements heavier than iron. This process requires an astrophysical environment with an extremely high neutron flux over a short amount of time (\sim seconds), creating very neutron-rich nuclei that are subsequently transformed to stable nuclei via β\beta^- decay. One key ingredient to large-scale rr-process reaction networks is radiative neutron-capture (n,γn,\gamma) rates, for which there exist virtually no data for extremely neutron-rich nuclei involved in the rr process. Due to the current status of nuclear-reaction theory and our poor understanding of basic nuclear properties such as level densities and average γ\gamma-decay strengths, theoretically estimated (n,γn,\gamma) rates may vary by orders of magnitude and represent a major source of uncertainty in any nuclear-reaction network calculation of rr-process abundances. In this review, we discuss new approaches to provide information on neutron-capture cross sections and reaction rates relevant to the rr process. In particular, we focus on indirect, experimental techniques to measure radiative neutron-capture rates. While direct measurements are not available at present, but could possibly be realized in the future, the indirect approaches present a first step towards constraining neutron-capture rates of importance to the rr process.Comment: 62 pages, 24 figures, accepted for publication in Progress in Particle and Nuclear Physic

    Evidence of a structural anomaly at 14 K in polymerised CsC60

    Full text link
    We report the results of a high-resolution synchrotron X-ray powder diffraction study of polymerised CsC60_{60} in the temperature range 4 to 40 K. Its crystal structure is monoclinic (space group I2/m), isostructural with RbC60_{60}. Below 14 K, a spontaneous thermal contraction is observed along both the polymer chain axis, aa and the interchain separation along [111], d1d_1. This structural anomaly could trigger the occurrence of the spin-singlet ground state, observed by NMR at the same temperature.Comment: 8 pages, 5 figures, submitte

    Analysis of data systems requirements for global crop production forecasting in the 1985 time frame

    Get PDF
    Data systems concepts that would be needed to implement the objective of the global crop production forecasting in an orderly transition from experimental to operational status in the 1985 time frame were examined. Information needs of users were converted into data system requirements, and the influence of these requirements on the formulation of a conceptual data system was analyzed. Any potential problem areas in meeting these data system requirements were identified in an iterative process
    corecore