15 research outputs found

    Generalized compactness in linear spaces and its applications

    Full text link
    The class of subsets of locally convex spaces called μ\mu-compact sets is considered. This class contains all compact sets as well as several noncompact sets widely used in applications. It is shown that many results well known for compact sets can be generalized to μ\mu-compact sets. Several examples are considered. The main result of the paper is a generalization to μ\mu-compact convex sets of the Vesterstrom-O'Brien theorem showing equivalence of the particular properties of a compact convex set (s.t. openness of the mixture map, openness of the barycenter map and of its restriction to maximal measures, continuity of a convex hull of any continuous function, continuity of a convex hull of any concave continuous function). It is shown that the Vesterstrom-O'Brien theorem does not hold for pointwise μ\mu-compact convex sets defined by the slight relaxing of the μ\mu-compactness condition. Applications of the obtained results to quantum information theory are considered.Comment: 27 pages, the minor corrections have been mad

    Optimal signal states for quantum detectors

    Full text link
    Quantum detectors provide information about quantum systems by establishing correlations between certain properties of those systems and a set of macroscopically distinct states of the corresponding measurement devices. A natural question of fundamental significance is how much information a quantum detector can extract from the quantum system it is applied to. In the present paper we address this question within a precise framework: given a quantum detector implementing a specific generalized quantum measurement, what is the optimal performance achievable with it for a concrete information readout task, and what is the optimal way to encode information in the quantum system in order to achieve this performance? We consider some of the most common information transmission tasks - the Bayes cost problem (of which minimal error discrimination is a special case), unambiguous message discrimination, and the maximal mutual information. We provide general solutions to the Bayesian and unambiguous discrimination problems. We also show that the maximal mutual information has an interpretation of a capacity of the measurement, and derive various properties that it satisfies, including its relation to the accessible information of an ensemble of states, and its form in the case of a group-covariant measurement. We illustrate our results with the example of a noisy two-level symmetric informationally complete measurement, for whose capacity we give analytical proofs of optimality. The framework presented here provides a natural way to characterize generalized quantum measurements in terms of their information readout capabilities.Comment: 13 pages, 1 figure, example section extende

    Achieving the Holevo bound via sequential measurements

    Full text link
    We present a new decoding procedure to transmit classical information in a quantum channel which, saturating asymptotically the Holevo bound, achieves the optimal rate of the communication line. Differently from previous proposals, it is based on performing a sequence of (projective) YES/NO measurements which in N steps determines which codeword was sent by the sender (N being the number of the codewords). Our analysis shows that as long as N is below the limit imposed by the Holevo bound the error probability can be sent to zero asymptotically in the length of the codewords.Comment: 10 pages, 1 figur

    Experimental Proposal for Achieving Superadditive Communication Capacities with a Binary Quantum Alphabet

    Full text link
    We demonstrate superadditivity in the communication capacity of a binary alphabet consisting of two nonorthogonal quantum states. For this scheme, collective decoding is performed two transmissions at a time. This improves upon the previous schemes of Sasaki et al. [Phys. Rev. A 58, 146 (1998)] where superadditivity was not achieved until a decoding of three or more transmissions at a time. This places superadditivity within the regime of a near-term laboratory demonstration. We propose an experimental test based upon an alphabet of low photon-number coherent states where the signal decoding is done with atomic state measurements on a single atom in a high-finesse optical cavity.Comment: 7 pages, 5 figure

    On properties of the space of quantum states and their application to construction of entanglement monotones

    Full text link
    We consider two properties of the set of quantum states as a convex topological space and some their implications concerning the notions of a convex hull and of a convex roof of a function defined on a subset of quantum states. By using these results we analyze two infinite-dimensional versions (discrete and continuous) of the convex roof construction of entanglement monotones, which is widely used in finite dimensions. It is shown that the discrete version may be 'false' in the sense that the resulting functions may not possess the main property of entanglement monotones while the continuous version can be considered as a 'true' generalized convex roof construction. We give several examples of entanglement monotones produced by this construction. In particular, we consider an infinite-dimensional generalization of the notion of Entanglement of Formation and study its properties.Comment: 34 pages, the minor corrections have been mad

    Communication Capacity of Quantum Computation

    Get PDF
    By considering quantum computation as a communication process, we relate its efficiency to a communication capacity. This formalism allows us to rederive lower bounds on the complexity of search algorithms. It also enables us to link the mixedness of a quantum computer to its efficiency. We discuss the implications of our results for quantum measurement.Comment: 4 pages, revte

    Quantum Nonlocality without Entanglement

    Get PDF
    We exhibit an orthogonal set of product states of two three-state particles that nevertheless cannot be reliably distinguished by a pair of separated observers ignorant of which of the states has been presented to them, even if the observers are allowed any sequence of local operations and classical communication between the separate observers. It is proved that there is a finite gap between the mutual information obtainable by a joint measurement on these states and a measurement in which only local actions are permitted. This result implies the existence of separable superoperators that cannot be implemented locally. A set of states are found involving three two-state particles which also appear to be nonmeasurable locally. These and other multipartite states are classified according to the entropy and entanglement costs of preparing and measuring them by local operations.Comment: 27 pages, Latex, 6 ps figures. To be submitted to Phys. Rev. A. Version 2: 30 pages, many small revisions and extensions, author added. Version 3: Proof in Appendix D corrected, many small changes; final version for Phys. Rev. A Version 4: Report of Popescu conjecture modifie

    Localization of Events in Space-Time

    Full text link
    The present paper deals with the quantum coordinates of an event in space-time, individuated by a quantum object. It is known that these observables cannot be described by self-adjoint operators or by the corresponding spectral projection-valued measure. We describe them by means of a positive-operator-valued (POV) measure in the Minkowski space-time, satisfying a suitable covariance condition with respect to the Poincare' group. This POV measure determines the probability that a measurement of the coordinates of the event gives results belonging to a given set in space-time. We show that this measure must vanish on the vacuum and the one-particle states, which cannot define any event. We give a general expression for the Poincare' covariant POV measures. We define the baricentric events, which lie on the world-line of the centre-of-mass, and we find a simple expression for the average values of their coordinates. Finally, we discuss the conditions which permit the determination of the coordinates with an arbitrary accuracy.Comment: 31 pages, latex, no figure

    Generators of Quantum One-Dimensional Diffusions

    No full text
    corecore