14 research outputs found

    Chromosomal location and mapping of quantitative trait locus determining technological parameters of grain and flour in strong-flour bread wheat cultivar saratovskaya 29

    Get PDF
    Bread wheat is the primary bread crop in the majority of countries in the world. The most important product that is manufactured from its grain and flour is yeast bread. In order to obtain an excellent bread, grain with high physical properties is needed for flour and dough. The Russian spring wheat cultivar Saratovskaya 29 is characterized by its exclusively high physical properties of flour and dough. The purpose of this work was to identify the chromosomes carrying the main loci for these traits in Saratovskaya 29 and to map them using recombinant substitution lines genotyped with molecular markers. A set of inter-varietal substitution lines Saratovskaya 29 (Yanetzkis Probat) was used to identify the “critical” chromosomes. The donor of individual chromosomes is a spring cultivar with average dough strength and tenacity. Substitution of 1D and 4D*7A chromosomes in the genetic background of Saratovskaya 29 resulted in a significant decrease in the physical properties of the dough. Such a deterioration in the case of 1D chromosome might be related to the variability of gluten protein composition. With the help of recombinant substitution double haploid lines obtained from a Saratovskaya 29 (Yanetzkis Probat 4D*7A) substitution line the region on the 4D chromosome was revealed in the strong-flour cultivar Saratovskaya 29, with the microsatellite locus Xgwm0165 to be associated with the unique physical properties of flour and dough. The detected locus is not related to the composition gluten proteins. These locus may be recommended to breeders for the selection of strong-flour cultivars. Additionally, a QTL associated with vitreousness of grain was mapped in the short arm of chromosome 7A

    QM/MM description of newly selected catalytic bioscavengers against organophosphorus compounds revealed reactivation stimulus mediated by histidine residue in the acyl-binding loop

    Get PDF
    © 2018 Zlobin, Mokrushina, Terekhov, Zalevsky, Bobik, Stepanova, Aliseychik, Kartseva, Panteleev, Golovin, Belogurov, Gabibov and Smirnov. Butyrylcholinesterase (BChE) is considered as an efficient stoichiometric antidote against organophosphorus (OP) poisons. Recently we utilized combination of calculations and ultrahigh-throughput screening (uHTS) to select BChE variants capable of catalytic destruction of OP pesticide paraoxon. The purpose of this study was to elucidate the molecular mechanism underlying enzymatic hydrolysis of paraoxon by BChE variants using hybrid quantum mechanical/molecular mechanical (QM/MM) calculations. Detailed analysis of accomplished QM/MM runs revealed that histidine residues introduced into the acyl-binding loop are always located in close proximity with aspartate residue at position 70. Histidine residue acts as general base thus leading to attacking water molecule activation and subsequent SN2 inline hydrolysis resulting in BChE reactivation. This combination resembles canonical catalytic triad found in active centers of various proteases. Carboxyl group activates histidine residue by altering its pKa, which in turn promotes the activation of water molecule in terms of its nucleophilicity. Observed re-protonation of catalytic serine residue at position 198 from histidine residue at position 438 recovers initial configuration of the enzyme's active center, facilitating next catalytic cycle. We therefore suggest that utilization of uHTS platform in combination with deciphering of molecular mechanisms by QM/MM calculations may significantly improve our knowledge of enzyme function, propose new strategies for enzyme design and open new horizons in generation of catalytic bioscavengers against OP poisons

    Evaluation of the long-term memory T cell in mice after immunization with a live tularemia vaccine

    Get PDF
    The vaccine strain F. tularensis 15 NIIEG induces long-lived cell-mediated immunity but exhibits a certain reactogenicity and genetic instability. Progress in development of a vaccine against tularemia has been limited by a lack of information regarding the mechanisms required to protect against this disease. The BALB/c mouse is the most commonly used animal to study tularemia due to its relatively low cost, well-characterized genetics, available immunological tools and mouse infection with virulent F. tularensis recapitulates human disease.CD4+ and CD8+T cells are known to be critical for the formation of protective immunity but the relative roles of memory T cell subpopulations in long lived protection against virulent strains of F. tularensis are not well established. We hypothesized that this immunity depends on central (TCM) and effector memory (TEM) T cells and their functional activity. In this study we have dissected the T cell immune response in BALB/c mice 30, 60 and 90 days after subcutaneous vaccination with 15 NIIEG.Multiparametric flow cytometry were used to characterize in vitro recall responses of splenocytes to F. tularensis antigen. TEM cells were identified as CD3+CD4+CD44+CD62L- and CD3+CD8+CD44+CD62L-, TCM cells as CD3+CD4+CD44+CD62L+ and CD3+CD8+CD44+CD62L+, respectively. The functional activity of memory T cells was assessed by the following parameters: the level of expression of the activation marker CD69 and cytokine-producing activity by staining with the intracellular cytokines IFNg and TNFa.Thus, development of a long-lived vaccine directed against F. tularensis is dependent on identifying not only the correlates of immunity present early after vaccination, but also those that persist in the host after the effector phase has ended. The maintenance of long-term protective immunity initiated by vaccination with F. tularensis strain 15 NIIEG has been shown to require the presence of antigen-specific CD4+ and CD8+ memory T cells producing IFNg and TNFa and expressing the activation marker CD69. A decrease in count and functional activity of CD8+TCM and CD8+TEM was detected in the long term after vaccination. The detected parameters of functional activity of memory T cells can be used as criteria for evaluation of protective immunity against virulent strains of F. tularensis

    Microfluidic droplet platform for ultrahigh-throughput single-cell screening of biodiversity

    Get PDF
    © 2017, National Academy of Sciences. All rights reserved.Ultrahigh-throughput screening (uHTS) techniques can identify unique functionality from millions of variants. To mimic the natural selection mechanisms that occur by compartmentalization in vivo, we developed a technique based on single-cell encapsulation in droplets of a monodisperse microfluidic double water-in-oil-in-water emulsion (MDE). Biocompatible MDE enables in-droplet cultivation of different living species. The combination of droplet-generating machinery with FACS followed by next-generation sequencing and liquid chromatography-mass spectrometry analysis of the secretomes of encapsulated organisms yielded detailed genotype/phenotype descriptions. This platform was probed with uHTS for biocatalysts anchored to yeast with enrichment close to the theoretically calculated limit and cell-to-cell interactions. MDE-FACS allowed the identification of human butyrylcholinesterase mutants that undergo self-reactivation after inhibition by the organophosphorus agent paraoxon. The versatility of the platform allowed the identification of bacteria, including slow-growing oral microbiota species that suppress the growth of a common pathogen, Staphylococcus aureus, and predicted which genera were associated with inhibitory activity

    QM/MM description of newly selected catalytic bioscavengers against organophosphorus compounds revealed reactivation stimulus mediated by histidine residue in the acyl-binding loop

    No full text
    © 2018 Zlobin, Mokrushina, Terekhov, Zalevsky, Bobik, Stepanova, Aliseychik, Kartseva, Panteleev, Golovin, Belogurov, Gabibov and Smirnov. Butyrylcholinesterase (BChE) is considered as an efficient stoichiometric antidote against organophosphorus (OP) poisons. Recently we utilized combination of calculations and ultrahigh-throughput screening (uHTS) to select BChE variants capable of catalytic destruction of OP pesticide paraoxon. The purpose of this study was to elucidate the molecular mechanism underlying enzymatic hydrolysis of paraoxon by BChE variants using hybrid quantum mechanical/molecular mechanical (QM/MM) calculations. Detailed analysis of accomplished QM/MM runs revealed that histidine residues introduced into the acyl-binding loop are always located in close proximity with aspartate residue at position 70. Histidine residue acts as general base thus leading to attacking water molecule activation and subsequent SN2 inline hydrolysis resulting in BChE reactivation. This combination resembles canonical catalytic triad found in active centers of various proteases. Carboxyl group activates histidine residue by altering its pKa, which in turn promotes the activation of water molecule in terms of its nucleophilicity. Observed re-protonation of catalytic serine residue at position 198 from histidine residue at position 438 recovers initial configuration of the enzyme's active center, facilitating next catalytic cycle. We therefore suggest that utilization of uHTS platform in combination with deciphering of molecular mechanisms by QM/MM calculations may significantly improve our knowledge of enzyme function, propose new strategies for enzyme design and open new horizons in generation of catalytic bioscavengers against OP poisons

    Characterization of Immunogenic and Protective Properties of the Modified Variants of the Strain Francisella tularensis 15 NIIEG

    No full text
    Francisella tularensis is an intracellular bacterium that causes tularemia. Progress in creating a safe and effective vaccine for the prevention of tularemia is challenging due to a lack of knowledge about immunological parameters indicative of protective adaptive immunity. Objective of the research was to assess the effect of modifications of the F. tularensis 15 NIIEG genome on the immunogenic and protective properties of F. tularensis 15/23-1ΔrecA and F. tularensis 15/23-1/sodBΔrecA strains. Materials and methods. Multi-parameter flow cytometry and the measurement of secreted cytokines were used to characterize the responses of mouse spleen lymphocytes in response to re-stimulation of F. tularensis with acid-insoluble complex (AIC) in vitro. Also, the titers of specific antibodies to F. tularensis lipopolysaccharide in blood serum were analyzed by enzyme-linked immunosorbent assay. Results and discussion. It has been shown that immunization with the studied strains led to a significant increase in CD4+ and/or CD8+ T cells capable of expressing functional markers: CD69, CD25 and/or CD28; an increase in the subpopulation of T-helpers synthesizing IFN-γ. In the body of immune mice, a pool of B-lymphocytes was formed, capable of secreting IFN-γ in response to their stimulation with AIC. Immunization with the strain 15/23-1/sodBΔrecA provided 70% protection in mice from intranasal infection with a virulent strain of F. tularensis SchuS4. More pronounced protective properties were associated with the activation of not only B-lymphocytes and T-helpers, but also with the simultaneous activation of cytotoxic T-lymphocytes

    Microfluidic droplet platform for ultrahigh-throughput single-cell screening of biodiversity

    No full text
    © 2017, National Academy of Sciences. All rights reserved.Ultrahigh-throughput screening (uHTS) techniques can identify unique functionality from millions of variants. To mimic the natural selection mechanisms that occur by compartmentalization in vivo, we developed a technique based on single-cell encapsulation in droplets of a monodisperse microfluidic double water-in-oil-in-water emulsion (MDE). Biocompatible MDE enables in-droplet cultivation of different living species. The combination of droplet-generating machinery with FACS followed by next-generation sequencing and liquid chromatography-mass spectrometry analysis of the secretomes of encapsulated organisms yielded detailed genotype/phenotype descriptions. This platform was probed with uHTS for biocatalysts anchored to yeast with enrichment close to the theoretically calculated limit and cell-to-cell interactions. MDE-FACS allowed the identification of human butyrylcholinesterase mutants that undergo self-reactivation after inhibition by the organophosphorus agent paraoxon. The versatility of the platform allowed the identification of bacteria, including slow-growing oral microbiota species that suppress the growth of a common pathogen, Staphylococcus aureus, and predicted which genera were associated with inhibitory activity
    corecore