998 research outputs found

    Evolving Role of Endoscopic Retrograde Cholangiopancreatography in Management of Extrahepatic Hepatic Ductal Injuries due to Blunt Trauma: Diagnostic and Treatment Algorithms

    Get PDF
    Extrahepatic hepatic ductal injuries (EHDIs) due to blunt abdominal trauma are rare. Given the rarity of these injuries and the insidious onset of symptoms, EHDI are commonly missed during the initial trauma evaluation, making their diagnosis difficult and frequently delayed. Diagnostic modalities useful in the setting of EHDI include computed tomography (CT), abdominal ultrasonography (AUS), nuclear imaging (HIDA scan), and cholangiography. Traditional options in management of EHDI include primary ductal repair with or without a T-tube, biliary-enteric anastomosis, ductal ligation, stenting, and drainage. Simple drainage and biliary decompression is often the most appropriate treatment in unstable patients. More recently, endoscopic retrograde cholangiopancreatography (ERCP) allowed for diagnosis and potential treatment of these injuries via stenting and/or papillotomy. Our review of 53 cases of EHDI reported in the English-language literature has focused on the evolving role of ERCP in diagnosis and treatment of these injuries. Diagnostic and treatment algorithms incorporating ERCP have been designed to help systematize and simplify the management of EHDI. An illustrative case is reported of blunt traumatic injury involving both the extrahepatic portion of the left hepatic duct and its confluence with the right hepatic duct. This injury was successfully diagnosed and treated using ERCP

    A Protocol for Extracting Structural Metrics From 3D Reconstructions of Corals

    Get PDF
    The 3D structure of individual coral colonies provides insights into their ecological functioning. While structure from motion techniques make it possible to reconstruct 3D models of coral colonies based on overlapping images, the extraction of relevant metrics of complexity in a reproducible way remains challenging. We present a method and associated scripts for the 3D reconstruction of coral colonies from in-situ images and the automatic extraction of eleven structural complexity metrics, designed to be run in widely-used software packages. The metrics are designed to capture aspects of complexity relating to the colony’s size and shape that are related to their ecological function. We explored the potential ecological applications of some of these metrics using linear models, comparing aspects of complexity among colonies of different size and morphotaxa (combined information on morphology and taxa). Our results showed that a metric as simple as colony diameter explained 95% of the variation in shelter provisioning capability when paired with information on colony morphotaxa. Further, the habitat provisioning of colonies of comparable size was similar among the six of the seven morphotaxa examined. During the current period of rapid uptake of photogrammetry among ecologists, the results of our study provide a basis to use data derived from 3D models to further explore the nuances of the relationship between structure and function of corals at the colony scale in a replicable and standardised way

    Settlement patterns of corals and other benthos on reefs with divergent environments and disturbances histories around the northeastern Arabian Peninsula

    Get PDF
    Larval supply is a principal factor determining the establishment, structure, and diversity of sessile benthic assemblages on coral reefs. Benthic reef communities in north-eastern Arabia have been subject to recurrent disturbances in recent years, and subsequent recovery will be, in part, driven by variation in the supply of available colonists. Using settlement tiles deployed seasonally over 1 year at eight sites encompassing three environmentally divergent regions (southern Arabian Gulf, the Musandam Peninsula in the Strait of Hormuz, and the Sea of Oman) we assessed spatial and seasonal variability in settlement of benthic reef organisms. There was strong spatial variation in composition of new colonists among regions, mainly driven by the high abundance of coralline algae in the Arabian Gulf, colonial ascidians on the Musandam Peninsula and barnacles in the Sea of Oman. Seasonal differences in composition of new colonists were less important than regional differences, with seasonal variation in settlement not consistent among regions. The number of corals settling to the tiles was low compared to those reported for other regions, with mean densities ranging from 0 corals m -2 year -1 in the Sea of Oman to 30 (± 0.6 SE) and 38 (± 0.5 SE) in Musandam and the Arabian Gulf, respectively. Peak coral settlement abundance in the Gulf occurred in summer and autumn and in Musandam in spring (averaging 82 and 70 settlers m -2 year -1 , respectively, during the peak settlement season). This work provides the first record of large-scale spatial and seasonal patterns of settlement in north-eastern Arabia and provides valuable information on the supply of settlers available to recolonize heavily disturbed reefs in this region. The extremely low rates of coral settlement suggest that these marginal reefs are likely to be extremely slow to recover from on-going and future disturbances

    Centriole splitting caused by loss of the centrosomal linker protein C-NAP1 reduces centriolar satellite density and impedes centrosome amplification

    Get PDF
    Duplication of the centrosomes is a tightly regulated process. Abnormal centrosome numbers can impair cell division and cause changes in how cells migrate. Duplicated centrosomes are held together by a proteinaceous linker made up of rootletin filaments anchored to the centrioles by C-NAP1. This linker is removed in a NEK2A kinase-dependent manner as mitosis begins. To explore C-NAP1 activities in regulating centrosome activities, we used genome editing to ablate it. C-NAP1–null cells were viable and had an increased frequency of premature centriole separation, accompanied by reduced density of the centriolar satellites, with reexpression of C-NAP1 rescuing both phenotypes. We found that the primary cilium, a signaling structure that arises from the mother centriole docked to the cell membrane, was intact in the absence of C-NAP1, although components of the ciliary rootlet were aberrantly localized away from the base of the cilium. C-NAP1–deficient cells were capable of signaling through the cilium, as determined by gene expression analysis after fluid flow–induced shear stress and the relocalization of components of the Hedgehog pathway. Centrosome amplification induced by DNA damage or by PLK4 or CDK2 overexpression was markedly reduced in the absence of C-NAP1. We conclude that centriole splitting reduces the local density of key centriolar precursors to impede overduplication

    Macroalgal browsing on a heavily degraded, urbanized equatorial reef system

    Get PDF
    The removal of macroalgal biomass is critical to the health of coral reef ecosystems. Previous studies on relatively intact reefs with diverse and abundant fish communities have quantified rapid removal of macroalgae by herbivorous fishes, yet how these findings rel ate to degraded reef systems where fish diversity and abundance are markedly lower and algal biomass substantially higher, is unclear. We surveyed roving herbivorous fish communities and quantified their capacity to remove the dominant macroalga Sargassum ilicifolium on seven reefs in Singapore; a heavily degraded urbanized reef system. The diversity and abundance of herbivorous fishes was extremely low, with eight species and a mean abundance ~1.1 individuals 60 m -2 recorded across reefs. Consumption of S. ilicifolium varied with distance from Singapore's main port with consumption being 3- to 17-fold higher on reefs furthest from the port (Pulau Satumu: 4.18 g h -1 ; Kusu Island: 2.38 g h -1 ) than reefs closer to the port (0.35-0.78 g h -1 ). Video observations revealed a single species, Siganus virgatus, was almost solely responsible for removing S. ilicifolium biomass, accounting for 83% of the mass-standardized bites. Despite low herbivore diversity and intense urbanization, macroalgal removal by fishes on some Singaporean reefs was directly comparable to rates reported for other inshore Indo-Pacific reefs

    Limited cross-shelf variation in the growth of three branching corals on Australia's Great Barrier Reef

    Get PDF
    Pronounced differences exist in the biodiversity and structure of coral reef assemblages with increasing distance from shore, which may be expected given marked cross-shelf gradients in environmental conditions. Cross-shelf variation in the abundance of coral reef organisms is likely to be caused, at least in part, by differences in demography (e.g., growth and survival), though this has rarely been tested. This study quantified growth of three distinct branching coral taxa (Acropora nasuta, Pocillopora spp. and Stylophora pistillata) at six locations on Australia's Great Barrier Reef (GBR), encompassing inshore, mid-shelf and outer-shelf reefs. Replicate colonies (0–15 colonies per species, per reef) were stained using Alizarin Red in December 2015 and retrieved one year later to quantify linear extension on replicate branches for each colony. Annual linear extension varied within and among coral taxa, with pronounced differences among reefs. For A. nasuta. and S. pistillata, growth rates were highest at one of the inshore reefs, Orpheus Island. However, inter-reef differences in linear extension were not explained by shelf position. Based on differences in skeletal density, which did vary according to shelf position, branching corals at the inshore sites may actually have higher rates of calcification compared to conspecifics on mid-and outer-shelf reefs. This study shows that growth of branching corals is not lower at inshore sites (and perhaps even higher) compared to sites at mid-shelf and outer reefs, despite generally higher levels of sedimentation and turbidity

    Fear effects and group size interact to shape herbivory on coral reefs

    Get PDF
    Fear of predators (‘fear effects’) is an important determinant of foraging decisions by consumers across a range of ecosystems. Group size is one of the main behavioural mechanisms for mitigating fear effects while also providing foraging benefits to group members. Within coral reef ecosystems, fear effects have been shown to influence the feeding rates of herbivorous fishes, a key functional group that prevents macroalgal overgrowth. Yet, how fear effects and group size interact to shape macroalgal removal on coral reefs remains unclear. Here, we conducted field-based experiments using models of a common piscivorous fish, the leopard coral grouper Plectropomus leopardus and a series of macroalgal Sargassum ilicifolium assays positioned at increasing distances from the models (1, 2, 3 and 4 m) on two coral reefs in Singapore to investigate how acute fear effects shape the intensity of herbivory, and whether these effects were influenced by variation in the group size of herbivorous fishes feeding on the assays. We found acute fear effects strongly influenced the foraging behaviour of herbivorous fishes over small spatial scales. Rates of Sargassum biomass removal, feeding rates and the total number of individual feeding events were all lower near the predator model. These effects dissipated rapidly with increasing distance from the predator model and were undetectable at a distance of 4 m. We also found generally larger group sizes of herbivorous fishes further from the predator model, presumably reflecting decreased risk. Furthermore, the number of individual bites/event increased significantly with increasing group size for two common browsing fishes, Siganus virgatus and Siganus javus. Our findings highlight that acute fear effects influence the distribution and intensity of herbivory over small spatial scales. Fear effects also interacted with herbivore group size resulting in changes in the number of individual feeding events and bite rates that collectively shape the realized ecosystem function of macroalgal removal on coral reefs. Group size is an important context-dependent factor that should be considered when examining fear effects on coral reefs. A free Plain Language Summary can be found within the Supporting Information of this article

    Recent advances in understanding the effects of climate change on coral reefs

    Get PDF
    Climate change is one of the greatest threats to the persistence of coral reefs. Sustained and ongoing increases in ocean temperatures and acidification are altering the structure and function of reefs globally. Here, we summarise recent advances in our understanding of the effects of climate change on scleractinian corals and reef fish. Although there is considerable among-species variability in responses to increasing temperature and seawater chemistry, changing temperature regimes are likely to have the greatest influence on the structure of coral and fish assemblages, at least over short–medium timeframes. Recent evidence of increases in coral bleaching thresholds, local genetic adaptation and inheritance of heat tolerance suggest that coral populations may have some capacity to respond to warming, although the extent to which these changes can keep pace with changing environmental conditions is unknown. For coral reef fishes, current evidence indicates increasing seawater temperature will be a major determinant of future assemblages, through both habitat degradation and direct effects on physiology and behaviour. The effects of climate change are, however, being compounded by a range of anthropogenic disturbances, which may undermine the capacity of coral reef organisms to acclimate and/or adapt to specific changes in environmental conditions

    Fear effects and group size interact to shape herbivory on coral reefs

    Get PDF
    Fear of predators (‘fear effects’) is an important determinant of foraging decisions by consumers across a range of ecosystems. Group size is one of the main behavioural mechanisms for mitigating fear effects while also providing foraging benefits to group members. Within coral reef ecosystems, fear effects have been shown to influence the feeding rates of herbivorous fishes, a key functional group that prevents macroalgal overgrowth. Yet, how fear effects and group size interact to shape macroalgal removal on coral reefs remains unclear. Here, we conducted field-based experiments using models of a common piscivorous fish, the leopard coral grouper Plectropomus leopardus and a series of macroalgal Sargassum ilicifolium assays positioned at increasing distances from the models (1, 2, 3 and 4 m) on two coral reefs in Singapore to investigate how acute fear effects shape the intensity of herbivory, and whether these effects were influenced by variation in the group size of herbivorous fishes feeding on the assays. We found acute fear effects strongly influenced the foraging behaviour of herbivorous fishes over small spatial scales. Rates of Sargassum biomass removal, feeding rates and the total number of individual feeding events were all lower near the predator model. These effects dissipated rapidly with increasing distance from the predator model and were undetectable at a distance of 4 m. We also found generally larger group sizes of herbivorous fishes further from the predator model, presumably reflecting decreased risk. Furthermore, the number of individual bites/event increased significantly with increasing group size for two common browsing fishes, Siganus virgatus and Siganus javus. Our findings highlight that acute fear effects influence the distribution and intensity of herbivory over small spatial scales. Fear effects also interacted with herbivore group size resulting in changes in the number of individual feeding events and bite rates that collectively shape the realized ecosystem function of macroalgal removal on coral reefs. Group size is an important context-dependent factor that should be considered when examining fear effects on coral reefs
    corecore