7,463 research outputs found

    Physics at SuperB

    Full text link
    Flavour will play a crucial role in understanding physics beyond the Standard Model. Progress in developing a future programme to investigate this central area of particle physics has recently passed a milestone, with the completion of the conceptual design report for SuperB, a very high luminosity, asymmetric e+e- collider. This article summarizes the important role of SuperB in understanding new physics in the LHC era.Comment: 4 pages, 2 figures. To appear in the proceedings of the International Europhysics Conference on High Energy Physics (EPS-HEP2007), Manchester, England, 19-25 July 200

    First determination of the CPCP content of D→π+π−π+π−D \to \pi^+\pi^-\pi^+\pi^- and updated determination of the CPCP contents of D→π+π−π0D \to \pi^+\pi^-\pi^0 and D→K+K−π0D \to K^+K^-\pi^0

    Get PDF
    Quantum-correlated ψ(3770)→DDˉ\psi(3770) \to D\bar{D} decays collected by the CLEO-c experiment are used to perform a first measurement of F+4πF_+^{4\pi}, the fractional CPCP-even content of the self-conjugate decay D→π+π−π+π−D \to \pi^+\pi^-\pi^+\pi^-, obtaining a value of 0.737±0.0280.737 \pm 0.028. An important input to the measurement comes from the use of D→KS0π+π−D \to K^0_{\rm S}\pi^+\pi^- and D→KL0π+π−D \to K^0_{\rm L}\pi^+\pi^- decays to tag the signal mode. This same technique is applied to the channels D→π+π−π0D \to\pi^+\pi^-\pi^0 and D→K+K−π0D \to K^+K^-\pi^0, yielding F+πππ0=1.014±0.045±0.022F_+^{\pi\pi\pi^0} = 1.014 \pm 0.045 \pm 0.022 and F+KKπ0=0.734±0.106±0.054F_+^{KK\pi^0} = 0.734 \pm 0.106 \pm 0.054, where the first uncertainty is statistical and the second systematic. These measurements are consistent with those of an earlier analysis, based on CPCP-eigenstate tags, and can be combined to give values of F+πππ0=0.973±0.017F_+^{\pi\pi\pi^0} = 0.973 \pm 0.017 and F+KKπ0=0.732±0.055F_+^{KK\pi^0} = 0.732 \pm 0.055. The results will enable the three modes to be included in a model-independent manner in measurements of the unitarity triangle angle γ\gamma using B∓→DK∓B^\mp \to DK^\mp decays, and in time-dependent studies of CPCP violation and mixing in the DDˉD\bar{D} system.Comment: Minor revisions following journal acceptanc

    Measurement of Counting Statistics of Electron Transport in a Tunnel Junction

    Full text link
    We present measurements of the time-dependent fluctuations in electrical current in a voltage-biased tunnel junction. We were able to simultaneously extract the first three moments of the tunnel current counting statistics. Detailed comparison of the second and the third moment reveals that counting statistics is accurately described by the Poissonian distribution expected for spontaneous current fluctuations due to electron charge discreteness, realized in tunneling transport at negligible coupling to environment.Comment: bibliography expande

    Generation of macroscopic quantum-superposition states by linear coupling to a bath

    Full text link
    We demonstrate through an exactly solvable model that collective coupling to any thermal bath induces effectively nonlinear couplings in a quantum many-body (multi-spin) system. The resulting evolution can drive an uncorrelated large-spin system with high probability into a macroscopic quantum-superposition state. We discuss possible experimental realizations.Comment: 4 pages, 2 figures, Physical Review Letters (in press

    The biomechanics of the locust ovipositor valves : a unique digging apparatus

    Get PDF
    The female locust has a unique mechanism for digging in order to deposit its eggs deep in the ground. It utilizes two pairs of sclerotized valves to displace the granular matter, while extending its abdomen as it propagates underground. This ensures optimal conditions for the eggs to incubate, and provides them with protection from predators. Here, two major axes of operation of the digging valves are identified, one in parallel to the propagation direction of the ovipositor, and one perpendicular to it. The direction-dependent biomechanics of the locust major, dorsal digging valves are quantified and analyzed, under forces in the physiological range and beyond, considering hydration level, as well as the females’ age, or sexual maturation state. Our findings reveal that the responses of the valves to compression forces in the specific directions change upon sexual maturation to follow their function, and depend on environmental conditions. Namely, in the physiological force range, the valves are resistant to mechanical failure. In addition, mature females, which lay eggs, have stiffer valves, up to roughly nineteen times the stiffness of the pre-mature locusts. The valves are stiffer in the major working direction, corresponding to soil shuffling and compression, compared to the direction of propagation. Hydration of the valves reduces their stiffness but increases their resilience against failure. These findings provide mechanical and materials guidelines for the design of novel non-drilling excavating tools, including 3D-printed anisotropic materials based on composites.Statement of significance The female locust lay its eggs underground in order to protect them from predators and to provide them with optimal conditions for hatching. In order to dig into the ground, it uses two pairs of valves: The ventral pair is plugged as a wedge, while the dorsal pair performs the digging of the oviposition tunnel. We study the mechanical response of the digging valves, depending on age, hydration level and direction of operation. Our findings show that during the course of roughly two weeks in the life of the adult female, the digging valves become up to nineteen-fold stiffer against failure, in order to fulfill their function as diggers. While hydration reduces the stiffness, it also increases the resilience against failure and renders the valves unbreakable within the estimated physiological force range and beyond. The digging valves are consistently stiffer in the digging direction than in the perpendicular direction, implying on their form-follows-function design.Competing Interest StatementThe authors have declared no competing interest

    Symmetric photon-photon coupling by atoms with Zeeman-split sublevels

    Full text link
    We propose a simple scheme for highly efficient nonlinear interaction between two weak optical fields. The scheme is based on the attainment of electromagnetically induced transparency simultaneously for both fields via transitions between magnetically split F=1 atomic sublevels, in the presence of two driving fields. Thereby, equal slow group velocities and symmetric cross-coupling of the weak fields over long distances are achieved. By simply tuning the fields, this scheme can either yield giant cross-phase modulation or ultrasensitive two-photon switching.Comment: Modified scheme, 4 pages, 1 figur

    Universal dynamical decoherence control of noisy single-and multi-qubit systems

    Full text link
    In this article we develop, step by step, the framework for universal dynamical control of two-level systems (TLS) or qubits experiencing amplitude- or phase-noise (AN or PN) due to coupling to a thermal bath. A comprehensive arsenal of modulation schemes is introduced and applied to either AN or PN, resulting in completely analogous formulae for the decoherence rates, thus underscoring the unified nature of this universal formalism. We then address the extension of this formalism to multipartite decoherence control, where symmetries are exploited to overcome decoherence.Comment: 28 pages, 4 figure

    Full counting statistics of a chaotic cavity with asymmetric leads

    Full text link
    We study the statistics of charge transport in a chaotic cavity attached to external reservoirs by two openings of different size which transmit non-equal number of quantum channels. An exact formula for the cumulant generating function has been derived by means of the Keldysh-Green function technique within the circuit theory of mesoscopic transport. The derived formula determines the full counting statistics of charge transport, i.e., the probability distribution and all-order cumulants of current noise. It is found that, for asymmetric cavities, in contrast to other mesoscopic systems, the third-order cumulant changes the sign at high biases. This effect is attributed to the skewness of the distribution of transmission eigenvalues with respect to forward/backward scattering. For a symmetric cavity we find that the third cumulant approaches a voltage-independent constant proportional to the temperature and the number of quantum channels in the leads.Comment: new section on probability distribution and new references adde
    • …
    corecore