2,845 research outputs found

    Calabi-Yau 3-folds from 2-folds

    Get PDF
    We consider type IIA string theory on a Calabi-Yau 2-fold with D6-branes wrapping 2-cycles in the 2-fold. We find a complete set of conditions on the supergravity solution for any given wrapped brane configuration in terms of SU(2) structures. We reduce the problem of finding a supergravity solution for the wrapped branes to finding a harmonic function on R×\timesCY2_2. We then lift this solution to 11-dimensions as a product of R(4.1)^{(4.1)} and a Calabi-Yau 3-fold. We show how the metric on the 3-fold is determined in terms of the wrapped brane solution. We write down the distinguished (3,0) form and the K{\"a}hler form of the 3-fold in terms of structures defined on the base 2-d complex manifold. We discuss the topology of the 3-fold in terms of the D6-branes and the underlying 2-fold. We show that in addition to the non-trivial cycles inherited from the underlying 2-fold there are N−1N-1 new 2-cycles. We construct closed (1,1) forms corresponding to these new cycles. We also display some explicit examples. One of our examples is that of D6-branes wrapping the 2-cycle in an A1_1 ALE space, the resulting 3-fold has h(1,1)=Nh^{(1,1)}=N, where NN is the number of D6-branes.Comment: 30 page

    Signature of superconducting states in cubic crystal without inversion symmetry

    Full text link
    The effects of absence of inversion symmetry on superconducting states are investigated theoretically. In particular we focus on the noncentrosymmetric compounds which have the cubic symmetry OO like Li2_2Pt3_3B. An appropriate and isotropic spin-orbital interaction is added in the Hamiltonian and it acts like a magnetic monopole in the momentum space. The consequent pairing wavefunction has an additional triplet component in the pseudospin space, and a Zeeman magnetic field B\bf{B} can induce a collinear supercurrent J\bf{J} with a coefficient Îș(T)\kappa(T). The effects of anisotropy embedded in the cubic symmetry and the nodal superconducting gap function on Îș(T)\kappa(T) are also considered. From the macroscopic perspectives, the pair of mutually induced J\bf{J} and magnetization M{\bf{M}} can affect the distribution of magnetic field in such noncentrosymmetric superconductors, which is studied through solving the Maxwell equation in the Meissner geometry as well as the case of a single vortex line. In both cases, magnetic fields perpendicular to the external ones emerge as a signature of the broken symmetry.Comment: 16 pages in pre-print forma

    Phases of dual superconductivity and confinement in softly broken N=2 supersymmetric Yang-Mills theories

    Get PDF
    We study the electric flux tubes that undertake color confinement in N=2 supersymmetric Yang-Mills theories softly broken down to N=1 by perturbing with the first two Casimir operators. The relevant Abelian Higgs model is not the standard one due to the presence of an off-diagonal coupling among different magnetic U(1) factors. We perform a preliminary study of this model at a qualitative level. BPS vortices are explicitely obtained for particular values of the soft breaking parameters. Generically however, even in the ultrastrong scaling limit, vortices are not critical but live in a "hybrid" type II phase. Also, ratios among string tensions are seen to follow no simple pattern. We examine the situation at the half Higgsed vacua and find evidence for solutions with the behaviour of superconducting strings. In some cases they are solutions to BPS equations.Comment: 15 pages, 1 figure, revtex; v2: typos corrected, final versio

    Spin fluctuations and superconductivity in noncentrosymmetric heavy fermion systems CeRhSi3_3 and CeIrSi3_3

    Full text link
    We study the normal and the superconducting properties in noncentrosymmetric heavy fermion superconductors CeRhSi3_3 and CeIrSi3_3. For the normal state, we show that experimentally observed linear temperature dependence of the resistivity is understood through the antiferromagnetic spin fluctuations near the quantum critical point (QCP) in three dimensions. For the superconducting state, we derive a general formula to calculate the upper critical field Hc2H_{c2}, with which we can treat the Pauli and the orbital depairing effect on an equal footing. The strong coupling effect for general electronic structures is also taken into account. We show that the experimentally observed features in Hc2∄z^H_{c2}\parallel \hat{z}, the huge value up to 30(T), the downward curvatures, and the strong pressure dependence, are naturally understood as an interplay of the Rashba spin-orbit interaction due to the lack of inversion symmetry and the spin fluctuations near the QCP. The large anisotropy between Hc2∄z^H_{c2}\parallel \hat{z} and Hc2⊄z^H_{c2}\perp \hat{z} is explained in terms of the spin-orbit interaction. Furthermore, a possible realization of the Fulde-Ferrell- Larkin-Ovchinnikov state for H⊄z^H\perp \hat{z} is studied. We also examine effects of spin-flip scattering processes in the pairing interaction and those of the applied magnetic field on the spin fluctuations. We find that the above mentioned results are robust against these effects. The consistency of our results strongly supports the scenario that the superconductivity in CeRhSi3_3 and CeIrSi3_3 is mediated by the spin fluctuations near the QCP.Comment: 21pages, 13figures, to be published in Phys. Rev.

    Dramatic robustness of a multiple delay dispersed interferometer to spectrograph errors: how mixing delays reduces or cancels wavelength drift

    Full text link
    We describe demonstrations of remarkable robustness to instrumental noises by using a multiple delay externally dispersed interferometer (EDI) on stellar observations at the Hale telescope. Previous observatory EDI demonstrations used a single delay. The EDI (also called “TEDI”) boosted the 2,700 resolution of the native TripleSpec NIR spectrograph (950-2450 nm) by as much as 10x to 27,000, using 7 overlapping delays up to 3 cm. We observed superb rejection of fixed pattern noises due to bad pixels, since the fringing signal responds only to changes in multiple exposures synchronous to the applied delay dithering. Remarkably, we observed a ~20x reduction of reaction in the output spectrum to PSF shifts of the native spectrograph along the dispersion direction, using our standard processing. This allowed high resolution observations under conditions of severe and irregular PSF drift otherwise not possible without the interferometer. Furthermore, we recently discovered an improved method of weighting and mixing data between pairs of delays that can theoretically further reduce the net reaction to PSF drift to zero. We demonstrate a 350x reduction in reaction to a native PSF shift using a simple simulation. This technique could similarly reduce radial velocity noise for future EDI’s that use two delays overlapped in delay space (or a single delay overlapping the native peak). Finally, we show an extremely high dynamic range EDI measurement of our ThAr lamp compared to a literature ThAr spectrum, observing weak features (~0.001x height of nearest strong line) that occur between the major lines. Because of individuality of each reference lamp, accurate knowledge of its spectrum between the (unfortunately) sparse major lines is important for precision radial velocimetry

    New non compact Calabi-Yau metrics in D=6

    Get PDF
    A method for constructing explicit Calabi-Yau metrics in six dimensions in terms of an initial hyperkahler structure is presented. The equations to solve are non linear in general, but become linear when the objects describing the metric depend on only one complex coordinate of the hyperkahler 4-dimensional space and its complex conjugated. This situation in particular gives a dual description of D6-branes wrapping a complex 1-cycle inside the hyperkahler space, which was studied by Fayyazuddin. The present work generalize the construction given by him. But the explicit solutions we present correspond to the non linear problem. This is a non linear equation with respect to two variables which, with the help of some specific anzatz, is reduced to a non linear equation with a single variable solvable in terms of elliptic functions. In these terms we construct an infinite family of non compact Calabi-Yau metrics.Comment: A numerical error has been corrected together with the corresponding analysis of the metri

    Magnetoelectric effects in heavy-fermion superconductors without inversion symmetry

    Get PDF
    We investigate effects of strong electron correlation on magnetoelectric transport phenomena in noncentrosymmetric superconductors with particular emphasis on its application to the recently discovered heavy-fermion superconductor CePt3_3Si. Taking into account electron correlation effects in a formally exact way, we obtain the expression of the magnetoelectric coefficient for the Zeeman-field-induced paramagnetic supercurrent, of which the existence was predicted more than a decade ago. It is found that in contrast to the usual Meissner current, which is much reduced by the mass renormalization factor in the heavy-fermion state, the paramagnetic supercurrent is not affected by the Fermi liquid effect. This result implies that the experimental observation of the magnetoelectric effect is more feasible in heavy-fermion systems than that in conventional metals with moderate effective mass.Comment: 8 pages, 2 figures, minor correction

    Chern-Simons Vortices in Supergravity

    Get PDF
    We study supersymmetric vortex solutions in three-dimensional abelian gauged supergravity. First, we construct the general U(1)-gauged D=3, N=2 supergravity whose scalar sector is an arbitrary Kahler manifold with U(1) isometry. This construction clarifies the connection between local supersymmetry and the specific forms of some scalar potentials previously found in the literature -- in particular, it provides the locally supersymmetric embedding of the abelian Chern-Simons Higgs model. We show that the Killing spinor equations admit rotationally symmetric vortex solutions with asymptotically conical geometry which preserve half of the supersymmetry.Comment: 26 pages, LaTeX2

    Prepotential and Instanton Corrections in N=2 Supersymmetric SU(N_1)xSU(N_2) Yang Mills Theories

    Get PDF
    In this paper we analyse the non-hyperelliptic Seiberg-Witten curves derived from M-theory that encode the low energy solution of N=2 supersymmetric theories with product gauge groups. We consider the case of a SU(N_1)xSU(N_2) gauge theory with a hypermultiplet in the bifundamental representation together with matter in the fundamental representations of SU(N_1) and SU(N_2). By means of the Riemann bilinear relations that hold on the Riemann surface defined by the Seiberg--Witten curve, we compute the logarithmic derivative of the prepotential with respect to the quantum scales of both gauge groups. As an application we develop a method to compute recursively the instanton corrections to the prepotential in a straightforward way. We present explicit formulas for up to third order on both quantum scales. Furthermore, we extend those results to SU(N) gauge theories with a matter hypermultiplet in the symmetric and antisymmetric representation. We also present some non-trivial checks of our results.Comment: 21 pages, 2 figures, minor changes and references adde
    • 

    corecore