1,857 research outputs found

    Random Aharonov-Bohm vortices and some funny families of integrals

    Full text link
    A review of the random magnetic impurity model, introduced in the context of the integer Quantum Hall effect, is presented. It models an electron moving in a plane and coupled to random Aharonov-Bohm vortices carrying a fraction of the quantum of flux. Recent results on its perturbative expansion are given. In particular, some funny families of integrals show up to be related to the Riemann ζ(3)\zeta(3) and ζ(2)\zeta(2).Comment: 10 page

    Mechanochemical synthesis of amorphous and crystalline Na₂P₂S₆-elucidation of local structural changes by X-ray total scattering and NMR

    Get PDF
    The development of all-solid-state sodium-ion batteries as an alternative energy storage system to lithium based techniques demands for sodium conducting solid electrolytes and an understanding of the sodium conduction mechanism governed by the local structure of these glass-ceramic materials. Na2P2S6 was synthesized in an amorphous state with subsequent crystallization. The change of the local structure before and after crystallization was analyzed in detail regarding the presence of structural building blocks such as [P2S6]2−, [P2S6]4−, [P2S7]4−, and [PS4]3−. The structure of the crystalline phase differs markedly compared to the corresponding amorphous phase

    Holonomy in the Schwarzschild-Droste Geometry

    Get PDF
    Parallel transport of vectors in curved spacetimes generally results in a deficit angle between the directions of the initial and final vectors. We examine such holonomy in the Schwarzschild-Droste geometry and find a number of interesting features that are not widely known. For example, parallel transport around circular orbits results in a quantized band structure of holonomy invariance. We also examine radial holonomy and extend the analysis to spinors and to the Reissner-Nordstr\"om metric, where we find qualitatively different behavior for the extremal (Q=MQ = M) case. Our calculations provide a toolbox that will hopefully be useful in the investigation of quantum parallel transport in Hilbert-fibered spacetimes.Comment: 18 Latex pages, 3 figures. Second replacement. This version as published in CQG with some misprints correcte

    Calculation of the Aharonov-Bohm wave function

    Full text link
    A calculation of the Aharonov-Bohm wave function is presented. The result is a series of confluent hypergeometric functions which is finite at the forward direction.Comment: 12 pages in LaTeX, and 3 PostScript figure

    The nature of iron-oxygen vacancy defect centers in PbTiO3

    Full text link
    The iron(III) center in ferroelectric PbTiO3 together with an oxygen vacancy forms a charged defect associate, oriented along the crystallographic c-axis. Its microscopic structure has been analyzed in detail comparing results from a semi-empirical Newman superposition model analysis based on finestructure data and from calculations using density functional theory. Both methods give evidence for a substitution of Fe3+ for Ti4+ as an acceptor center. The position of the iron ion in the ferroelectric phase is found to be similar to the B-site in the paraelectric phase. Partial charge compensation is locally provided by a directly coordinated oxygen vacancy. Using high-resolution synchrotron powder diffraction, it was verified that lead titanate remains tetragonal down to 12 K, exhibiting a c/a-ratio of 1.0721.Comment: 11 pages, 5 figures, accepted in Phys. Rev.

    Application of emulsified acids on sandstone formation at elevated temperature conditions: an experimental study

    Get PDF
    Emulsified acid has attracted considerable attention of the oil and gas industry due to its delayed nature that allows deeper penetration of acid into the formation which essentially facilitate further enhancing the well productivity, and at the same time minimizes the corrosion issues. However, emulsified acid has only been extensively studied and applied on carbonate formations. Considering more than half of the reservoirs worldwide are sandstone reservoirs, studying the effects of emulsified acid on sandstone under high-temperature conditions would unlock the potential of emulsified acid and help generate more value for the oil and gas industry by improving the well productivity from sandstone reservoirs. To ensure the applicability of the emulsified acid on the real sandstone reservoir, which usually has a temperature higher than ambient conditions, the stability of emulsified acids is investigated under 300 °F. Then, the stable emulsified acid samples are developed and their impact on the properties of Berea sandstone core samples, including porosity, pore-size distribution, permeability and wettability, are investigated. The core samples have undergone pre-flush (10% HCl:5% CH3COOH) before the main flush (emulsified acid). The emulsified acids are prepared using hydrofluoric acid, hydrochloric acid, phosphoric acid, cationic surfactant and chelating agent. Fourteen core samples are saturated with different emulsified acids under vacuum conditions for 3 days to ensure maximum saturation. The porosity, permeability and wettability of each core sample are measured before and after the reaction with acid. Nuclear magnetic resonance analysis has been applied to evaluate the change in pore size distribution. This study has demonstrated that the emulsified acids are capable of improving the porosity and permeability of Berea sandstone core sample. The pore size distribution has also been affected by the application of emulsified acid, where more large pores have been evolved to the core samples due to the reaction of acids with the sandstone which ultimately helps in improving the productivity of hydrocarbons. This indicates less precipitation of the secondary reaction products resulting better enhancement in sandstone flow properties. These results demonstrate the potential of emulsified acid during sandstone acidizing as emulsified acid significantly improved the sandstone properties which can essentially enhance the well productivity

    RNA:protein ratio of the unicellular organism as a characteristic of phosphorous and nitrogen stoichiometry and of the cellular requirement of ribosomes for protein synthesis

    Get PDF
    Background Mean phosphorous:nitrogen (P:N) ratios and relationships of P:N ratios with the growth rate of organisms indicate a surprising similarity among and within microbial species, plants, and insect herbivores. To reveal the cellular mechanisms underling this similarity, the macromolecular composition of seven microorganisms and the effect of specific growth rate (SGR) on RNA:protein ratio, the number of ribosomes, and peptide elongation rate (PER) were analyzed under different conditions of exponential growth. Results It was found that P:N ratios calculated from RNA and protein contents in these particular organisms were in the same range as the mean ratios reported for diverse organisms and had similar positive relationships with growth rate, consistent with the growth-rate hypothesis. The efficiency of protein synthesis in microorganisms is estimated as the number of active ribosomes required for the incorporation of one amino acid into the synthesized protein. This parameter is calculated as the SGR:PER ratio. Experimental and theoretical evidence indicated that the requirement of ribosomes for protein synthesis is proportional to the RNA:protein ratio. The constant of proportionality had the same values for all organisms, and was derived mechanistically from the characteristics of the protein-synthesis machinery of the cell (the number of nucleotides per ribosome, the average masses of nucleotides and amino acids, the fraction of ribosomal RNA in the total RNA, and the fraction of active ribosomes). Impairment of the growth conditions decreased the RNA:protein ratio and increased the overall efficiency of protein synthesis in the microorganisms. Conclusion Our results suggest that the decrease in RNA:protein and estimated P:N ratios with decrease in the growth rate of the microorganism is a consequence of an increased overall efficiency of protein synthesis in the cell resulting from activation of the general stress response and increased transcription of cellular maintenance genes at the expense of growth related genes. The strong link between P:N stoichiometry, RNA:protein ratio, ribosomal requirement for protein synthesis, and growth rate of microorganisms indicated by the study could be used to characterize the N and P economy of complex ecosystems such as soils and the oceans
    • 

    corecore