A review of the random magnetic impurity model, introduced in the context of
the integer Quantum Hall effect, is presented. It models an electron moving in
a plane and coupled to random Aharonov-Bohm vortices carrying a fraction of the
quantum of flux. Recent results on its perturbative expansion are given. In
particular, some funny families of integrals show up to be related to the
Riemann ζ(3) and ζ(2).Comment: 10 page