2,432 research outputs found

    Diagrammatic quantum field formalism for localized electrons

    Full text link
    We introduce a diagrammatic quantum field formalism for the evaluation of normalized expectation values of operators, and suitable for systems with localized electrons. It is used to develop a convergent series expansion for the energy in powers of overlap integrals of single-particle orbitals. This method gives intuitive and practical rules for writing down the expansion to arbitrary order of overlap, and can be applied to any spin configuration and to any dimension. Its applicability for systems with well localized electrons has been illustrated with examples, including the two-dimensional Wigner crystal and spin-singlets in the low-density electron gas.Comment: 13 pages, 0 figure

    Rayleigh superradiance and dynamic Bragg gratings in an end-pumped Bose-Einstein condensate

    Full text link
    We study experimentally superradiant Rayleigh scattering from a Bose-Einstein condensate (BEC) in a new parameter regime where pump depletion and the exchange of photons between the endfire modes are important. Through experiments and simulations we show that collective atom light coupling leads to the self-organized formation of dynamic Bragg gratings within the sample. These gratings lead to an efficient back-scattering of pump photons and optical resonator structures within the BEC.Comment: 5 pages, 3 figure

    A Femtosecond Neutron Source

    Full text link
    The possibility to use the ultrashort ion bunches produced by circularly polarized laser pulses to drive a source of fusion neutrons with sub-optical cycle duration is discussed. A two-side irradiation of a thin foil deuterated target produces two countermoving ion bunches, whose collision leads to an ultrashort neutron burst. Using particle-in-cell simulations and analytical modeling, it is evaluated that, for intensities of a few 1019Wcm210^{19} W cm^{-2}, more than 10310^3 neutrons per Joule may be produced within a time shorter than one femtosecond. Another scheme based on a layered deuterium-tritium target is outlined.Comment: 15 pages, 3 figure

    Sequential superradiant scattering from atomic Bose-Einstein condensates

    Full text link
    We theoretically discuss several aspects of sequential superradiant scattering from atomic Bose-Einstein condensates. Our treatment is based on the semiclassical description of the process in terms of the Maxwell-Schroedinger equations for the coupled matter-wave and optical fields. First, we investigate sequential scattering in the weak-pulse regime and work out the essential mechanisms responsible for bringing about the characteristic fan-shaped side-mode distribution patterns. Second, we discuss the transition between the Kapitza-Dirac and Bragg regimes of sequential scattering in the strong-pulse regime. Finally, we consider the situation where superradiance is initiated by coherently populating an atomic side mode through Bragg diffraction, as in studies of matter-wave amplification, and describe the effect on the sequential scattering process.Comment: 9 pages, 4 figures. Submitted to Proceedings of LPHYS'06 worksho

    Model of optical phantoms thermal response upon irradiation with 975 nm dermatological laser

    Get PDF
    We have developed a numerical model describing the optical and thermal behavior of optical tissue phantoms upon laser irradiation. According to our previous studies, the phantoms can be used as substitute of real skin from the optical, as well as thermal point of view. However, the thermal parameters are not entirely similar to those of real tissues thus there is a need to develop mathematical model, describing the thermal and optical response of such materials. This will facilitate the correction factors, which would be invaluable in translation between measurements on skin phantom to real tissues, and gave a good representation of a real case application

    Continuous-distribution puddle model for conduction in trilayer graphene

    Full text link
    An insulator-to-metal transition is observed in trilayer graphene based on the temperature dependence of the resistance under different applied gate voltages. At small gate voltages the resistance decreases with increasing temperature due to the increase in carrier concentration resulting from thermal excitation of electron-hole pairs. At large gate voltages excitation of electron-hole pairs is suppressed, and the resistance increases with increasing temperature because of the enhanced electron-phonon scattering. We find that the simple model with overlapping conduction and valence bands, each with quadratic dispersion relations, is unsatisfactory. Instead, we conclude that impurities in the substrate that create local puddles of higher electron or hole densities are responsible for the residual conductivity at low temperatures. The best fit is obtained using a continuous distribution of puddles. From the fit the average of the electron and hole effective masses can be determined.Comment: 18 pages, 5 figure

    Energetic beams of negative and neutral hydrogen from intense laser plasma interaction

    Get PDF
    One of the most striking demonstrations of intermolecular forces is the tension at the surface of liquid n-alkanes. The prediction of surface tension is important in the design of distillation towers, extraction units and tower internals such as bubble caps and trays, since it has a considerable influence on the transfer of mass and energy across interfaces. Surface tension data are needed wherever foaming emulsification, droplet formation or wetting are involved. They are also required in a number of equations for two-phase flow calculations and for determining the flow regime. Petroleum engineers are especially interested in the surface tension in the extraction of crude oil to add surfactants to modify the interfacial properties between crude oil and the geological reservoir to improve production and increase oil yields. In this work, a simple computer program using Arrhenius-type asymptotic exponential function, Vandermoned matrix and Matlab technical computing language, is developed for the estimation of surface tension of paraffin hydrocarbons as a function of molecular weight and temperature. The surface tension is calculated for temperatures in the range of 250 to 440 K and paraffin hydrocarbons molecular weights between 30 and 250. The proposed numerical technique is superior owing to its accuracy and clear numerical background, wherein the relevant coefficients can be retuned quickly if more data become available in the future. Estimations are found to be in excellent agreement with the reliable data in the literature with average absolute deviation being less than 2%
    corecore