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Experimental demonstration of negative ion acceleration to MeV energies from sub-micron size
droplets of water spray irradiated by ultra-intense laser pulses is presented. Thanks to the specific
target configuration and laser parameters, more than 109 negative ions per steradian solid angle in
5% energy bandwidth are accelerated in a stable and reliable manner. To our knowledge, by virtue
of the ultra-short duration of the emission, this is by far the brightest negative ion source reported.
The data also indicate the existence of beams of neutrals with at least similar numbers and energies.
© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3670741]

I. INTRODUCTION

Laser acceleration of ions is an intrinsic feature of laser-
produced plasmas. Laser-driven positive ions are extensively
studied for their possible applications, e.g., in cancer therapy,
conventional accelerator injectors, and ignition of controlled
thermonuclear fusion.1 They have been already applied in
high resolution radiography.

This work highlights another important property of laser
plasma interaction, namely the capability of acting as a source
of high energy and high brightness negative ion beams.
Negative ions are employed for many processing applica-
tions, and in the accelerator technology, including injectors
dedicated to heating of tokamak plasmas (e.g., the negative
ion-based Neutral Beam Injection (NBI) system in the In-
ternational Thermonuclear Experimental Reactor (ITER) and
the next generation of particle accelerators such as spallation
sources ESS and SNS).

In general, while several types of positive ion sources
are readily available for different applications, the negative
ion source development has lagged behind, because handling
loosely bound negative ions is a technological challenge. In
the present paper, we propose a method of negative ion gen-
eration based on two electron capture mechanism during the
collision of laser accelerated high energy positive ions with
atoms or molecules in a tenuous medium (in the specific
case of the experiment reported, a water spray target2) while
preserving most of their original kinetic energy acquired in
the acceleration process. This relatively simple and reliable
method overcomes many technological challenges.

II. EXPERIMENTAL SETUP

A mist of water droplets (spray) is formed by adiabatic
expansion of superheated water vapour through a hypersonic

a)Contributed paper, published as part of the Proceedings of the 14th Interna-
tional Conference on Ion Sources, Giardini Naxos, Italy, September 2011.

b)Author to whom correspondence should be addressed. Electronic mail:
s.teravetisyan@qub.ac.uk.

nozzle into a vacuum.3, 4 The schematic of the generator is
shown in Fig. 1. It comprises of a solenoid driven pulsed valve
(from Parker Hannifin company), a heated channel, and the
hypersonic conical nozzle. For target optimization and sys-
tem synchronization, the spray is pulsed by an electromag-
netic valve every 6 s with a pulse duration of 2 ms, which
keeps the background pressure before each spray pulse on a
10−5 mbar level.

Water (99.9% v/v—water volume concentration) with
35 bar backing pressure is injected upon opening of the valve
into the heated channel (1 mm in diameter and 15 mm in
length) at a temperature of up to 150 ◦C. Though the heater is
in direct thermal contact with the channel, a 9 mm Polypenco
PEEK 450 G insulator is used to separate it from the valve in
order to keep the temperature of the liquid inside the valve be-
low the boiling temperature. The injected water is vaporized
in the heating channel and a superheated vapour under high
pressure is formed. The latter expands through a hypersonic

FIG. 1. (Color online) Spray generator.
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FIG. 2. (Color online) Experimental setup.

nozzle, with 8 mm long conical section and 2ϕ = 7◦ opening
angle, into a vacuum and forms a spray of sub-micron liq-
uid droplets. The scattering of electromagnetic radiation by
spherical particles, called Mie scattering,5 and transmission
measurement of the spray was employed to characterize the
size of individual droplets and density of the spray. Droplet
diameter was determined to be d = (0.15 ± 0.01) μm, the
droplet number density at about 1 mm below the nozzle was
(7.5 ± 0.7) × 1010 droplets cm−3, and the mean atomic den-
sity was >1018 atoms cm−3 (Ref. 3).

In our experiments, the spray target was irradiated by
40 fs, 1 J Ti: Sapphire laser pulses at Max-Born-Institute,
Berlin. With an f/2.5 off-axis parabolic mirror, a maximum
vacuum intensity of 5 × 1019 W/cm2 was reached. The tem-
poral contrast of the laser pulse, characterized by a scanning
third order cross correlator, several picoseconds before the
pulse peak had a relative value of about 10−8.

The experimental setup is presented in Fig. 2. The
charged particles are detected by the two identical Thomson
spectrometers, where particles deflected in parallel electric
and magnetic fields will create spectra as parabolic traces on
the detector. Particles with different mass-to-charge ratios lie
on separate parabolas. The position of a particle on the trace
depends on its energy: the higher the ion energy, the less the
ion is deviated from the point where undeflected particles and
x-rays would hit the detector (zero point).

III. RESULTS AND DISCUSSION

Ion spectra in forward and transverse directions detected
by micro-channel plate detectors are shown in Fig. 3. While
in the forward direction only positive ions are measured, in
the transverse direction one can observe ion traces on ei-
ther side of the zero point, corresponding to singly-charged,
positive, and negative oxygen ions. Interestingly, only O1+

and O1− ions have been detected in the transverse direc-
tion while in the forward direction one sees also differ-
ent oxygen ion species and protons. The emission proper-
ties of O1+ and O1− ions in the transverse direction appear

FIG. 3. Ion spectra in forward and transverse directions.

to be highly correlated. Figure 4 shows the dependence of
the maximum energies for O1+ and O1− ions emitted in the
transverse direction on the position of the laser focus inside
the spray. The production of negative ions was remarkably
stable and reproducible if the laser pulse was focused well
inside the spray during its steady flow stage. The observed
asymmetric distribution of accelerated ions can be understood
if one considers the interaction geometry. The laser pulse ion-
izes droplets and heats electrons along its propagation path.
The subsequent plasma expansion creates a narrow channel
of hot, low density plasma. Consequently ions propagating
in the forward direction are not affected significantly by the
interaction with the low density plasma, and maintain the fea-
tures (spectrum and charge state) defined by the acceleration
process. The ions propagating in the transverse direction cross
a significant length of denser, cold medium and can undergo
recombination processes.

The propagation of highly charged oxygen ions in the lat-
eral direction is highly collisional (n0σ l � 1), therefore in
the cascade of recombination chain of elastic collisions: On+

→ O(n + 1), the neutral products may maintain the high energy,
which makes the inverse processes of in-flight ionization pos-
sible. As a result of these competing recombination-ionization
processes, oxygen ions with single charge will emerge from
the spray.

During the collisions of high energy oxygen ion with the
atoms in the spray, processes of electron capture and loss
have high probability. These are resonant processes, which
achieve the maximum probability if the fast ion velocity is of
the same order of the velocity of bound electrons in the atom.
The velocity of a 1 MeV oxygen ion, 3.4 × 106 m/s, is in-
deed of the order of the electron velocity in the atom.6 The
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FIG. 4. (Color online) Ion energy dependence on laser focus position in
spray. 0 is the centre of the spray defined with the accuracy of ±100 μm.
The positive sign in the lower figure shows the direction of laser propagation.

competitive electron capture and loss processes are

A+ → A0 → A−,

A+ → A− → A0, (1)

A+ → A0 → A− → A0.

According to Ref. 7, the cross-section of the electron capture
process of a positive oxygen ion in a collision with an oxygen
atom is σ 10 ≈ 18 × 10−16 cm2 (O+ → O) for an impacting
particle energy of 400 keV. For high energy neutral oxygen
atom collision with another oxygen atom at rest, the elec-
tron loss cross section is: σ 01 ≈ 6 × 10−16 cm2 (O → O+)
and σ 0 − 1 ≈ 1 × 10−16 cm2 for the electron capture
(O → O−).7–9 These cross-sections remain nearly con-
stant for impacting particle energies in the range of a few
hundred keV.

In the electron capture and loss processes (1) one would
expect that the largest contribution to the generation of O−

comes from the ions, which have originally single positive
charge, as these two species are close in the charge-exchange
reactions chain. Therefore, because the interactions proceed
almost elastically, one observes that the O− maximum energy
varies similarly as the maximum energy of the O+ ions (Fig. 4).

An estimate of the brightness of the negative ion source
leads to extremely high values, exceeding 108 A cm−2 sr−1, if
one considers the emission of 109 negative ions with energy
around 1 MeV in 5% energy bandwidth formed at the edge
of the spray (within the range 50 μm) during 10 ps in colli-

sions of ∼1 MeV O+ ions with neutrals. The source volume
is approximated to the transverse projection of the laser-focal
volume: 6 × 70 μm2 (focal spot diameter times confocal pa-
rameter). This is by far the highest brightness reported for a
negative ion source, which arises mainly due to the ultrashort
duration of the emission.10

Our interpretation implies the existence of a large num-
ber of fast neutral oxygen atoms with about MeV energies ac-
cording to the possible charge-exchange processes (1). This
could be verified in future experiments, although there are al-
ready indirect indications of their presence in the experimen-
tal spectra. The “zero” points in the spectrometers (Fig. 3) are
formed by neutrals and x-ray photons emitted from the inter-
action region.11 The x-ray emission is expected to be almost
isotropic. Because of lower absorption in the ionized medium
encountered in the forward direction, x-rays are preferentially
observed in the forward direction.12 On the contrary, the neu-
tral oxygen atoms, arising from a chain of charge-exchange
processes (1) would be emitted mostly in the transverse di-
rection. The signal given by the spectrometer’s “zero” point
in the transverse direction is ten times stronger than in the
forward direction, which is then consistent with a signal due
to fast neutrals (∼1010 neutrals collected through the spec-
trometer pinhole).

In general, laser-based negative ion acceleration can be
an attractive option in the near future to overcome limita-
tions imposed on ion pulse duration and emittance in currently
available negative ion sources. This approach could offer a
significant increase (3–4 orders of magnitude) in the achieved
source brightness avoiding high costs and many technolog-
ical challenges typical for conventional accelerator technol-
ogy. However, there will be also many new technical chal-
lenges for the laser-based negative ion source.
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