11,580 research outputs found

    Cross-diffusion systems for image processing: II. The nonlinear case

    Full text link
    In this paper the use of nonlinear cross-diffu\-sion systems to model image restoration is investigated, theoretically and numerically. In the first case, well-posedness, scale-space properties and long time behaviour are analyzed. From a numerical point of view, a computational study of the performance of the models is carried out, suggesting their diversity and potentialities to treat image filtering problems. The present paper is a continuation of a previous work of the same authors, devoted to linear cross-diffusion models. \keywords{Cross-diffusion \and Complex diffusion \and Image restoration

    Theory of Andreev reflection in a two-orbital model of iron-pnictide superconductors

    Full text link
    A recently developed theory for the problem of Andreev reflection between a normal metal (N) and a multiband superconductor (MBS) assumes that the incident wave from the normal metal is coherently transmitted through several bands inside the superconductor. Such splitting of the probability amplitude into several channels is the analogue of a quantum waveguide. Thus, the appropriate matching conditions for the wave function at the N/MBS interface are derived from an extension of quantum waveguide theory. Interference effects between the transmitted waves inside the superconductor manifest themselves in the conductance. We provide results for a FeAs superconductor, in the framework of a recently proposed effective two-band model and two recently proposed gap symmetries: in the sign-reversed s-wave (Δcos(kx)cos(ky)\Delta\cos(k_x)\cos(k_y)) scenario resonant transmission through surface Andreev bound states (ABS) at nonzero energy is found as well as destructive interference effects that produce zeros in the conductance; in the extended s-wave (Δ[cos(kx)+cos(ky)]\Delta[\cos(k_x)+\cos(k_y)]) scenario no ABS at finite energy are found.Comment: 4 pages, 5 figure

    Robust self-trapping of vortex beams in a saturable optical medium

    Get PDF
    We report the first observation of robust self-trapping of vortex beams propagating in a uniform condensed medium featuring local saturable self-focusing nonlinearity. Optical vortices with topological charge m=1, that remain self-trapped over ~ 5 Rayleigh lengths, are excited in carbon disulfide using a helical light beam at 532 nm and intensities from 8 to 10 GW/cm^2. At larger intensities, the vortex beams lose their stability, spontaneously breaking into two fragments. Numerical simulations based on the nonlinear Schr\"odinger equation including the three-photon absorption and nonpolynomial saturation of the refractive nonlinearity demonstrate close agreement with the experimental findings.Comment: 27 pages, 7 figures,to be published in Phys. Rev. A (2016
    corecore