28 research outputs found

    Segmented scintillation detectors with silicon photomultiplier readout for measuring antiproton annihilations

    Full text link
    The Atomic Spectroscopy and Collisions Using Slow Antiprotons (ASACUSA) experiment at the Antiproton Decelerator (AD) facility of CERN constructed segmented scintillators to detect and track the charged pions which emerge from antiproton annihilations in a future superconducting radiofrequency Paul trap for antiprotons. A system of 541 cast and extruded scintillator bars were arranged in 11 detector modules which provided a spatial resolution of 17 mm. Green wavelength-shifting fibers were embedded in the scintillators, and read out by silicon photomultipliers which had a sensitive area of 1 x 1 mm^2. The photoelectron yields of various scintillator configurations were measured using a negative pion beam of momentum p ~ 1 GeV/c. Various fibers and silicon photomultipliers, fiber end terminations, and couplings between the fibers and scintillators were compared. The detectors were also tested using the antiproton beam of the AD. Nonlinear effects due to the saturation of the silicon photomultiplier were seen at high annihilation rates of the antiprotons.Comment: Copyright 2014 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Review of Scientific Instruments, Vol.85, Issue 2, 2014 and may be found at http://dx.doi.org/10.1063/1.486364

    First observation of two hyperfine transitions in antiprotonic He-3

    Get PDF
    We report on the first experimental results for microwave spectroscopy of the hyperfine structure of antiprotonic He-3. Due to the helium nuclear spin, antiprotonic He-3 has a more complex hyperfine structure than antiprotonic He-4 which has already been studied before. Thus a comparison between theoretical calculations and the experimental results will provide a more stringent test of the three-body quantum electrodynamics (QED) theory. Two out of four super-super-hyperfine (SSHF) transition lines of the (n,L)=(36,34) state were observed. The measured frequencies of the individual transitions are 11.12559(14) GHz and 11.15839(18) GHz, less than 1 MHz higher than the current theoretical values, but still within their estimated errors. Although the experimental uncertainty for the difference of these frequencies is still very large as compared to that of theory, its measured value agrees with theoretical calculations. This difference is crucial to be determined because it is proportional to the magnetic moment of the antiproton.Comment: 8 pages, 6 figures, just published (online so far) in Physics Letters

    Ultra thin polymer foil cryogenic window for antiproton deceleration and storage

    Full text link
    We present the design and characterisation of a cryogenic window based on an ultra-thin aluminised PET foil at T < 10K, which can withstand a pressure difference larger than 1bar at a leak rate < 1×1091\times 10^{-9} mbar\cdot l/s. Its thickness of approximately 1.7 μ\mum makes it transparent to various types of particles over a broad energy range. To optimise the transfer of 100keV antiprotons through the window, we tested the degrading properties of different aluminium coated PET foils of thicknesses between 900nm and 2160nm, concluding that 1760nm foil decelerates antiprotons to an average energy of 5 keV. We have also explicitly studied the permeation as a function of coating thickness and temperature, and have performed extensive thermal and mechanical endurance and stress tests. Our final design integrated into the experiment has an effective open surface consisting of 7 holes with 1 mm diameter and will transmit up to 2.5% of the injected 100keV antiproton beam delivered by the AD/ELENA-facility of CERN

    Antiprotonische und Pionische Helium Spektroskopie / Antiprotonic and Pionic Helium Spectroscopy

    No full text

    Development of narrowband lasers for spectroscopy of antiprotonic atoms

    No full text
    We review some lasers developed by the ASACUSA collaboration of CERN, to carry out spectroscopy of antiprotonic helium atoms. These lasers were based on the technique of continuous-wave injection seeding of pulsed lasers. The laser output covered the wavelength regions 264–1154 nm, with peak powers of ~ 1 MW and spectral resolutions of 6–40 MHz. The devices were recently used to measure the transition frequencies of antiprotonic helium atoms to a fractional precision of several parts in ~ 109

    Development of narrowband lasers for spectroscopy of antiprotonic atoms

    No full text
    We review some lasers developed by the ASACUSA collaboration of CERN, to carry out spectroscopy of antiprotonic helium atoms. These lasers were based on the technique of continuous-wave injection seeding of pulsed lasers. The laser output covered the wavelength regions 264–1154 nm, with peak powers of ~ 1 MW and spectral resolutions of 6–40 MHz. The devices were recently used to measure the transition frequencies of antiprotonic helium atoms to a fractional precision of several parts in ~ 109

    Laser spectroscopy of long-lived antiprotonic and pionic helium in superfluid helium

    No full text
    The PiHe collaboration of PSI recently carried out laser spectroscopy of an infrared transition in three-body pionic helium atoms that were synthesized in a superfluid (He-II) helium target. Analogous measurements of antiprotonic helium atoms embedded in liquid helium were carried out by the ASACUSA collaboration of CERN. Spectral lines of unexpectedly narrow, sub-gigahertz linewidth were revealed in the antiproton case. An abrupt reduction in the linewidth was observed when the liquid helium (He-I) surrounding the atom transitioned into the superfluid phase
    corecore