35 research outputs found

    Ecofriendly alkali metal cations diffusion improves fabrication of mixed-phase titania polymorphs on fixed substrate by chemical vapor deposition (CVD) for photocatalytic degradation of azo dye

    No full text
    Controlling the nanoscale synthesis of semiconductor TiO2 on a fixed substrate has fascinated the curiosity of academics for decades. Synthesis development is required to give an easy-to-control technique and parameters for TiO2 manufacture, leading to advancements in prospective applications such as photocatalysts. This study, mixed-phase TiO2(B)/other titania thin films were synthesized on a fused quartz substrate utilizing a modified Chemical vapor depodition involving alkali-metal ions (Li+, Na+, and K+) solution pre-treatment. It was discovered that different cations promote dramatically varied phases and compositions of thin films. The films had a columnar structure with agglomerated irregular-shaped particles with a mean thickness of 800–2000 nm. Na+ ions can promote TiO2(B) more effectively than K+ ions, however Li+ ions cannot synthesize TiO2(B). The amounts of TiO2(B) in thin films increase with increasing alkali metal (K+ and Na+) concentration. According to experimental and DFT calculations, the hypothesized TiO2(B) production mechanism happened via the meta-stable intermediate alkaline titanate transformation caused by alkali-metal ion diffusion. The mixed phase of TiO2(B) and anatase TiO2 on the fixed substrate (1 × 1 cm2) obtained from Na+ pre-treated procedures showed significant photocatalytic activity for the degradation of methylene blue. K2Ti6O12, Li2TiO3, Rutile TiO2, and Brookite TiO2 phase formations produced by K+ and Li + pretreatment are low activity photocatalysts. Photocatalytic activities were more prevalent in NaOH pre-treated samples (59.1% dye degradation) than in LiOH and KOH pre-treated samples (49.6% and 34.2%, respectively). This revealed that our developed CVD might generate good photocatalytic thin films of mixed-phase TiO2(B)/anatase TiO2 on any substrate, accelerating progress in future applications
    corecore