138 research outputs found

    Exciton-Polariton Oscillations in Real Space

    Full text link
    We introduce and model spin-Rabi oscillations based on exciton-polaritons in semiconductor microcavities. The phase and polarization of oscillations can be controlled by resonant coherent pulses and the propagation of oscillating domains gives rise to phase-dependent interference patterns in real space. We show that interbranch polariton-polariton scattering controls the propagation of oscillating domains, which can be used to realize logic gates based on an analogue variable phase.Comment: 6 page

    Spontaneous polariton currents in periodic lateral chains

    Get PDF
    We predict spontaneous generation of superfluid polariton currents in planar microcavities with lateral periodic modulation of both potential and decay rate. A spontaneous breaking of spatial inversion symmetry of a polariton condensate emerges at a critical pumping, and the current direction is stochastically chosen. We analyse the stability of the current with respect to the fluctuations of the condensate. A peculiar spatial current domain structure emerges, where the current direction is switched at the domain walls, and the characteristic domain size and lifetime scale with the pumping power.Comment: 6+6 pages, 4+1 figures (with supplemental material

    Stochastic polarization formation in exciton-polariton Bose-Einstein condensates

    Full text link
    We demonstrate theoretically the spontaneous formation of a stochastic polarization in exciton-polariton Bose-Einstein condensates in planar microcavities under pulsed excitation. Below the threshold pumping intensity (dependent on the polariton life-time) the average polarization degree is close to zero, whilst above threshold the condensate acquires a polarization described by a (pseudospin) vector with random orientation, in general. We establish the link between second order coherence of the polariton condensate and the distribution function of its polarization. We examine also the mechanisms of polarization dephasing and relaxation.Comment: 4 pages, 3 figure

    Pseudo diamagnetism of four component exciton condensates

    Full text link
    We analyze the spin structure of the ground state of four-component exciton condensates in coupled quantum wells as a function of spin-dependent interactions and applied magnetic field. The four components correspond to the degenerate exciton states characterized by ±2\pm2 and ±1\pm1 spin projections to the axis of the structure. We show that in a wide range of parameters, the chemical potential of the system increases as a function of magnetic field, which manifests a pseudo-diamagnetism of the system. The transitions to polarized two- and one-component condensates can be of the first-order in this case. The predicted effects are caused by energy conserving mixing of ±2\pm2 and ±1\pm1 excitons.Comment: 4 pages, 2 figure

    Exciton-photon correlations in bosonic condensates of exciton-polaritons

    Full text link
    Exciton-polaritons are mixed light-matter quasiparticles. We have developed a statistical model describing stochastic exciton-photon transitions within a condensate of exciton polaritons. We show that the exciton-photon correlator depends on the "hidden variable" which characterizes the rate of exciton-photon transformations in the condensate. We discuss implications of this effect for the quantum statistics of photons emitted by polariton lasers.Comment: 5 pages, 2 figure

    Pseudoconservative dynamics of coupled polariton condensates

    Get PDF
    © 2021 The Authors. Published by American Physical Society. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1103/PhysRevResearch.3.033187Open-dissipative systems obeying parity-time (PT) symmetry are capable of demonstrating oscillatory dynamics akin to the conservative systems. In contrast to limit cycle solutions characteristic of nonlinear systems, the PT-symmetric oscillations form a continuum of nonisolated orbits. However, precise sculpturing of the real potential and the gain-loss spatial profiles required for establishing of the PT symmetry is practically challenging. The optical devices, such as lasers, exhibit relaxation dynamics and do not operate as the PT-symmetric systems. Here we demonstrate how these constraints can be overcome. We predict that a pair of optically trapped polariton condensates (a polariton dimer) can be excited and operated in the oscillating regime typical of the isolated systems. This regime can be realized in the presence of both dissipative and conservative coupling between the condensates and can be maintained at an arbitrary external pump intensity. Every orbit is characterized by a frequency comb appearing in the spectrum of a dimer in the presence of the conservative nonlinearity. Our results pave the way for the creation of the optical computing devices operating under the constant-wave external pumping.Published versio
    corecore