22 research outputs found
Engineering an endocrine Neo-Pancreas by repopulation of a decellularized rat pancreas with islets of Langerhans
Decellularization of pancreata and repopulation of these non-immunogenic
matrices with islets and endothelial cells could provide transplantable,
endocrine Neo- Pancreata. In this study, rat pancreata were perfusion
decellularized and repopulated with intact islets, comparing three perfusion
routes (Artery, Portal Vein, Pancreatic Duct). Decellularization effectively
removed all cellular components but conserved the pancreas specific
extracellular matrix. Digital subtraction angiography of the matrices showed a
conserved integrity of the decellularized vascular system but a contrast
emersion into the parenchyma via the decellularized pancreatic duct. Islets
infused via the pancreatic duct leaked from the ductular system into the peri-
ductular decellularized space despite their magnitude. TUNEL staining and
Glucose stimulated insulin secretion revealed that islets were viable and
functional after the process. We present the first available protocol for
perfusion decellularization of rat pancreata via three different perfusion
routes. Furthermore, we provide first proof-of-concept for the repopulation of
the decellularized rat pancreata with functional islets of Langerhans. The
presented technique can serve as a bioengineering platform to generate
implantable and functional endocrine Neo-Pancreata