12,985 research outputs found
MHD simulations of the formation and propagation of protostellar jets to observational length scales
We present 2.5-D global, ideal MHD simulations of magnetically and
rotationally driven protostellar jets from Keplerian accretion discs, wherein
only the initial magnetic field strength at the inner radius of the disc,
, is varied. Using the AMR-MHD code AZEUS, we self-consistently
follow the jet evolution into the observational regime ()
with a spatial dynamic range of . The simulations reveal a
three-component outflow: 1) A hot, dense, super-fast and highly magnetised 'jet
core'; 2) a cold, rarefied, trans-fast and highly magnetised 'sheath'
surrounding the jet core and extending to a tangential discontinuity; and 3) a
warm, dense, trans-slow and weakly magnetised shocked ambient medium entrained
by the advancing bow shock. The simulations reveal power-law relationships
between and the jet advance speed, , the average jet
rotation speed, , as well as fluxes of mass,
momentum, and kinetic energy. Quantities that do not depend on
include the plasma- of the transported material which, in all cases,
seems to asymptote to order unity. Jets are launched by a combination of the
'magnetic tower' and 'bead-on-a-wire' mechanisms, with the former accounting
for most of the jet acceleration---even for strong fields---and continuing well
beyond the fast magnetosonic point. At no time does the leading bow shock leave
the domain and, as such, these simulations generate large-scale jets that
reproduce many of the observed properties of protostellar jets including their
characteristic speeds and transported fluxes.Comment: 26 pages, 16 figures. Accepted for publication in MNRA
Recommended from our members
Apolipoprotein E4, inhibitory network dysfunction, and Alzheimer's disease.
Apolipoprotein (apo) E4 is the major genetic risk factor for Alzheimer's disease (AD), increasing risk and decreasing age of disease onset. Many studies have demonstrated the detrimental effects of apoE4 in varying cellular contexts. However, the underlying mechanisms explaining how apoE4 leads to cognitive decline are not fully understood. Recently, the combination of human induced pluripotent stem cell (hiPSC) modeling of neurological diseases in vitro and electrophysiological studies in vivo have begun to unravel the intersection between apoE4, neuronal subtype dysfunction or loss, subsequent network deficits, and eventual cognitive decline. In this review, we provide an overview of the literature describing apoE4's detrimental effects in the central nervous system (CNS), specifically focusing on its contribution to neuronal subtype dysfunction or loss. We focus on γ-aminobutyric acid (GABA)-expressing interneurons in the hippocampus, which are selectively vulnerable to apoE4-mediated neurotoxicity. Additionally, we discuss the importance of the GABAergic inhibitory network to proper cognitive function and how dysfunction of this network manifests in AD. Finally, we examine how apoE4-mediated GABAergic interneuron loss can lead to inhibitory network deficits and how this deficit results in cognitive decline. We propose the following working model: Aging and/or stress induces neuronal expression of apoE. GABAergic interneurons are selectively vulnerable to intracellularly produced apoE4, through a tau dependent mechanism, which leads to their dysfunction and eventual death. In turn, GABAergic interneuron loss causes hyperexcitability and dysregulation of neural networks in the hippocampus and cortex. This dysfunction results in learning, memory, and other cognitive deficits that are the central features of AD
Parity-Violating Electron Scattering as a Probe of Supersymmetry
We compute the one-loop supersymmetric (SUSY) contributions to the weak
charges of the electron () and proton () using the Minimal
Supersymmetric Standard Model (MSSM). These vector couplings of the
-boson to fermions will be determined in two fixed-target,
parity-violating electron scattering experiments. The SUSY loop contributions
to and can be substantial, leading to several percent
corrections to the Standard Model values for these quantities. We show that the
relative signs of the SUSY loop effects on and are correlated
and positive over nearly all of the MSSM parameter space, whereas inclusion of
R-parity nonconserving interactions can lead to opposite sign relative shifts
in the weak charges. Thus, a comparison of and measurements
could help distinguish between different SUSY scenarios.Comment: 4 pages, 2 figure
Probing Supersymmetry with Neutral Current Scattering Experiments
We compute the supersymmetric contributions to the weak charges of the
electron and proton in the framework of Minimal Supersymmetric Standard Model.
We also consider the ratio of neutral current to charged current cross
sections, R_nu and R_nubar at nu (nubar)-nucleus deep inelastic scattering, and
compare the supersymmetric corrections with the deviations of these quantities
from the Standard Model predictions implied by the recent NuTeV measurement.Comment: 4 pages, contribution to the proceedings of CIPANP 2003 (May, 2003),
New York Cit
Radiative corrections in neutrino-deuterium disintegration
The radiative corrections of order alpha for the charged- and neutral-current neutrino-deuterium disintegration for energies relevant to the SNO experiment are evaluated. Particular attention is paid to the issue of the bremsstrahlung detection threshold. It is shown that the radiative corrections to the total cross section for the charged current reaction are independent of that threshold, as they must be for consistency, and amount to a slowly decreasing function of the neutrino energy E-nu, varying from about 4% at low energies to 3% at the end of the B-8 spectrum. The differential cross section corrections, on the other hand, do depend on the bremsstrahlung detection threshold. Various choices of the threshold are discussed. It is shown that for a realistic choice of the threshold and for the actual electron energy threshold of the SNO detector, the deduced B-8 nu(e) flux should be decreased by about 2%. The radiative corrections to the neutral-current reaction are also evaluated
DISPATCH: A Numerical Simulation Framework for the Exa-scale Era. I. Fundamentals
We introduce a high-performance simulation framework that permits the
semi-independent, task-based solution of sets of partial differential
equations, typically manifesting as updates to a collection of `patches' in
space-time. A hybrid MPI/OpenMP execution model is adopted, where work tasks
are controlled by a rank-local `dispatcher' which selects, from a set of tasks
generally much larger than the number of physical cores (or hardware threads),
tasks that are ready for updating. The definition of a task can vary, for
example, with some solving the equations of ideal magnetohydrodynamics (MHD),
others non-ideal MHD, radiative transfer, or particle motion, and yet others
applying particle-in-cell (PIC) methods. Tasks do not have to be grid-based,
while tasks that are, may use either Cartesian or orthogonal curvilinear
meshes. Patches may be stationary or moving. Mesh refinement can be static or
dynamic. A feature of decisive importance for the overall performance of the
framework is that time steps are determined and applied locally; this allows
potentially large reductions in the total number of updates required in cases
when the signal speed varies greatly across the computational domain, and
therefore a corresponding reduction in computing time. Another feature is a
load balancing algorithm that operates `locally' and aims to simultaneously
minimise load and communication imbalance. The framework generally relies on
already existing solvers, whose performance is augmented when run under the
framework, due to more efficient cache usage, vectorisation, local
time-stepping, plus near-linear and, in principle, unlimited OpenMP and MPI
scaling.Comment: 17 pages, 8 figures. Accepted by MNRA
A general method for calculating three-dimensional compressible laminar and turbulent boundary layers on arbitrary wings
The method described utilizes a nonorthogonal coordinate system for boundary-layer calculations. It includes a geometry program that represents the wing analytically, and a velocity program that computes the external velocity components from a given experimental pressure distribution when the external velocity distribution is not computed theoretically. The boundary layer method is general, however, and can also be used for an external velocity distribution computed theoretically. Several test cases were computed by this method and the results were checked with other numerical calculations and with experiments when available. A typical computation time (CPU) on an IBM 370/165 computer for one surface of a wing which roughly consist of 30 spanwise stations and 25 streamwise stations, with 30 points across the boundary layer is less than 30 seconds for an incompressible flow and a little more for a compressible flow
- …