15 research outputs found

    Bacterial diversity in typical abandoned multi-contaminated nonferrous metal(loid) tailings during natural attenuation

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordAbandoned nonferrous metal(loid) tailings sites are anthropogenic, and represent unique and extreme ecological niches for microbial communities. Tailings contain elevated and toxic content of metal(loid)s that had negative effects on local human health and regional ecosystems. Microbial communities in these typical tailings undergoing natural attenuation are often very poorly examined. The diversity and inferred functions of bacterial communities were examined at seven nonferrous metal(loid) tailings sites in Guangxi (China), which were abandoned between 3 and 31 years ago. The acidity of the tailings sites rose over 31 years of site inactivity. Desulfurivibrio, which were always coupled with sulfur/sulfide oxidation to dissimilate the reduction of nitrate/nitrite, were specific in tailings with 3 years abandonment. However, genus beneficial to plant growth (Rhizobium), and iron/sulfur- oxidizing bacteria and metal(loid)-related genera (Acidiferrobacter and Acidithiobacillus) were specific within tailings abandoned for 23 years or more. The increased abundance of acid-generating iron/sulfur-oxidizing and metal(loid)-related bacteria and specific bacterial communities during the natural attenuation could provide new insights for understanding microbial ecosystem functioning in mine tailings. OTUs related to Sulfuriferula, Bacillus, Sulfurifustis, Gaiella, and Thiobacillus genera were the main contributors differentiating the bacterial communities between the different tailing sites. Multiple correlation analyses between bacterial communities and geochemical parameters indicated that pH, TOC, TN, As, Pb, and Cu were the main drivers influencing the bacterial community structures. PICRUSt functional exploration revealed that the main functions were related to DNA repair and recombination, important functions for bacterial adaptation to cope with the multi- contamination of tailings. Such information provides new insights to guide future metagenomic studies for the identification of key functions beyond metal- transformation/resistance. As well, our results offers novel outlooks for the management of bacterial communities during natural attenuation of multi-contaminated nonferrous metal(loid) tailings sites.International Key Project from National Natural Science Foundation of ChinaProjects of Natural Science Foundation of ChinaPublic welfare project of Chinese Ministry of Environmental Protectionnternational key project of Ministry of Science and Technology of ChinaS2016G2135Centre National de la Recherche ScientifiqueRoyal Society Newton Mobility GrantNational Natural Science Foundation International Joint collaboration China-Swede

    Impacts of adaptation and responsibility framings on attitudes towards climate change mitigation

    Get PDF
    It is likely that climate change communications and media coverage will increasingly stress the importance of adaptation, yet little is known about whether or how this may affect attitudes towards mitigation. Despite concerns that communicating adaptation could undermine public support for mitigation, previous research has found it can have the opposite effect by increasing risk salience. It is also unclear whether people respond differently to information about mitigation and adaptation depending on whether action is framed as an individual or government responsibility. Using an experimental design, this study sought to examine how public attitudes towards mitigation are influenced by varying climate change messages, and how this might interact with prior attitudes to climate change. UK-based participants (N = 800) read one of four texts in a 2 × 2 design comparing adaptation versus mitigation information and personal versus governmental action. No main effect was found for adaptation versus mitigation framing, nor for individual action versus government policy, but we did observe a series of interaction effects with prior attitudes to climate change. Mitigation and adaptation information affected participants’ responses differently depending on their pre-existing levels of concern about climate change, suggesting that mitigation framings may be more engaging for those with high levels of concern, whereas adaptation framings may be more engaging for low-concern individuals. Government mitigation action appears to engender particularly polarised attitudes according to prior concern. Implications for climate change communications are considered
    corecore