25,261 research outputs found
Hydrogen column density evaluations toward Capella: consequences on the interstellar deuterium abundance
The deuterium abundance evaluation in the direction of Capella has for a long
time been used as a reference for the local interstellar medium (ISM) within
our Galaxy. We show here that broad and weak HI components could be present on
the Capella line of sight, leading to a large new additional systematic
uncertainty on the N(HI) evaluation.
The D/H ratio toward Capella is found to be equal to 1.67 (+/-0.3)x10^-5 with
almost identical chi^2 for all the fits (this range includes only the
systematic error; the 2 sigma statistical one is almost negligible in
comparison). It is concluded that D/H evaluations over HI column densities
below 10^19 cm^-2 (even perhaps below 10^20 cm^-2 if demonstrated by additional
observations) may present larger uncertainties than previously anticipated. It
is mentionned that the D/O ratio might be a better tracer for DI variations in
the ISM as recently measured by the Far Ultraviolet Spectroscopic Explorer
(FUSE).Comment: Accepted for publication in the Astrophysical Journal Letter
Classification of GHZ-type, W-type and GHZ-W-type multiqubit entanglements
We propose the concept of SLOCC-equivalent basis (SEB) in the multiqubit
space. In particular, two special SEBs, the GHZ-type and the W-type basis are
introduced. They can make up a more general family of multiqubit states, the
GHZ-W-type states, which is a useful kind of entanglement for quantum
teleporatation and error correction. We completely characterize the property of
this type of states, and mainly classify the GHZ-type states and the W-type
states in a regular way, which is related to the enumerative combinatorics.
Many concrete examples are given to exhibit how our method is used for the
classification of these entangled states.Comment: 16 pages, Revte
Detection of deuterium Balmer lines in the Orion Nebula
The detection and first identification of the deuterium Balmer emission
lines, D-alpha and D-beta, in the core of the Orion Nebula is reported.
Observations were conducted at the 3.6m Canada-France-Hawaii Telescope, using
the Echelle spectrograph Gecko. These lines are very narrow and have identical
11 km/s velocity shifts with respect to H-alpha and H-beta. They are probably
excited by UV continuum fluorescence from the Lyman (DI) lines and arise from
the interface between the HII region and the molecular cloud.Comment: 4 pages, latex, 1 figure, 1 table, accepted for publication in
Astronomy & Astrophysics, Letter
Optimal quantum teleportation with an arbitrary pure state
We derive the maximum fidelity attainable for teleportation using a shared
pair of d-level systems in an arbitrary pure state. This derivation provides a
complete set of necessary and sufficient conditions for optimal teleportation
protocols. We also discuss the information on the teleported particle which is
revealed in course of the protocol using a non-maximally entangled state.Comment: 10 pages, REVTe
Simulation of time evolution with the MERA
We describe an algorithm to simulate time evolution using the Multi-scale
Entanglement Renormalization Ansatz (MERA) and test it by studying a critical
Ising chain with periodic boundary conditions and with up to L ~ 10^6 quantum
spins. The cost of a simulation, which scales as L log(L), is reduced to log(L)
when the system is invariant under translations. By simulating an evolution in
imaginary time, we compute the ground state of the system. The errors in the
ground state energy display no evident dependence on the system size. The
algorithm can be extended to lattice systems in higher spatial dimensions.Comment: final version with data improvement (precision and size), 4.1 pages,
4 figures + extra on X
Entanglement entropy in collective models
We discuss the behavior of the entanglement entropy of the ground state in
various collective systems. Results for general quadratic two-mode boson models
are given, yielding the relation between quantum phase transitions of the
system (signaled by a divergence of the entanglement entropy) and the
excitation energies. Such systems naturally arise when expanding collective
spin Hamiltonians at leading order via the Holstein-Primakoff mapping. In a
second step, we analyze several such models (the Dicke model, the two-level BCS
model, the Lieb-Mattis model and the Lipkin-Meshkov-Glick model) and
investigate the properties of the entanglement entropy in the whole parameter
range. We show that when the system contains gapless excitations the
entanglement entropy of the ground state diverges with increasing system size.
We derive and classify the scaling behaviors that can be met.Comment: 11 pages, 7 figure
- âŠ