499 research outputs found
Harmonics generation in electron-ion collisions in a short laser pulse
Anomalously high generation efficiency of coherent higher field-harmonics in
collisions between {\em oppositely charged particles} in the field of
femtosecond lasers is predicted. This is based on rigorous numerical solutions
of a quantum kinetic equation for dense laser plasmas which overcomes
limitations of previous investigations.Comment: 4 pages, 4 eps-figures include
Quantum kinetic theory of the filamentation instability
The quantum electromagnetic dielectric tensor for a multi species plasma is
re-derived from the gauge invariant Wigner-Maxwell system and presented under a
form very similar to the classical one. The resulting expression is then
applied to a quantum kinetic theory of the electromagnetic filamentation
instability. Comparison is made with the quantum fluid theory including a Bohm
pressure term, and with the cold classical plasma result. A number of
analytical expressions are derived for the cutoff wave vector, the largest
growth rate and the most unstable wave vector
Quantum Well Based on Graphene and Narrow-Gap Semiconductors
We consider the energy spectrum of the planar quantum well which consisted of
two ribbons of narrow-gap semiconductors and a graphene ribbon between ones. It
is shown that the gapless mode appears only in case of inverted narrow-gap
semiconductors. Spin splitting of the energy spectrum for a nonsymmetric
quantum well is calculated taking into account a specificity of graphene. We
investigate interface states and optical transitions. It is shown that the
optical transitions are possible only with a conservation of a parity.Comment: 13 pages, 2 figures, 1 tabl
Robustness of a local Fermi Liquid against Ferromagnetism and Phase Separation
We study the properties of Fermi Liquids with the microscopic constraint of a
local self-energy. In this case the forward scattering sum-rule imposes strong
limitations on the Fermi-Liquid parameters, which rule out any Pomeranchek
instabilities. For both attractive and repulsive interactions, ferromagnetism
and phase separation are suppressed. Superconductivity is possible in an s-wave
channel only. We also study the approach to the metal-insulator transition, and
find a Wilson ratio approaching 2. This ratio and other properties of
Sr_{1-x}La_xTiO_3 are all consistent with the local Fermi Liquid scenario.Comment: 4 pages (twocolumn format), can compile with or without epsf.sty
latex style file -- Postscript files: fig1.ps and fig2.p
Comment on ``Damping of energetic gluons and quarks in high-temperature QCD''
Burgess and Marini have recently pointed out that the leading contribution to
the damping rate of energetic gluons and quarks in the QCD plasma, given by
, can be obtained by simple arguments obviating the need
of a fully resummed perturbation theory as developed by Braaten and Pisarski.
Their calculation confirmed previous results of Braaten and Pisarski, but
contradicted those proposed by Lebedev and Smilga. While agreeing with the
general considerations made by Burgess and Marini, I correct their actual
calculation of the damping rates, which is based on a wrong expression for the
static limit of the resummed gluon propagator. The effect of this, however,
turns out to be cancelled fortuitously by another mistake, so as to leave all
of their conclusions unchanged. I also verify the gauge independence of the
results, which in the corrected calculation arises in a less obvious manner.Comment: 5 page
Quantum scattering in one dimension
A self-contained discussion of nonrelativistic quantum scattering is
presented in the case of central potentials in one space dimension, which will
facilitate the understanding of the more complex scattering theory in two and
three dimensions. The present discussion illustrates in a simple way the
concept of partial-wave decomposition, phase shift, optical theorem and
effective-range expansion.Comment: 8 page
Kramers-Kronig Relations For The Dielectric Function And The Static Conductivity Of Coulomb Systems
The mutual influence of singularities of the dielectric permittivity e(q,w)
in a Coulomb system in two limiting cases w tends to zero, q tends to zero, and
opposite q tends to zero, w tends to zero is established. It is shown that the
dielectric permittivity e(q,w) satisfies the Kramers-Kronig relations, which
possesses the singularity due to a finite value of the static conductivity.
This singularity is associated with the long "tails" of the time correlation
functions.Comment: 9 pages, 0 figure
Linear theory of nonlocal transport in a magnetized plasma
A system of nonlocal electron-transport equations for small perturbations in
a magnetized plasma is derived using the systematic closure procedure of V. Yu.
Bychenkov et al., Phys. Rev. Lett. 75, 4405 (1995). Solution to the linearized
kinetic equation with a Landau collision operator is obtained in the diffusive
approximation. The Fourier components of the longitudinal, oblique, and
transversal electron fluxes are found in an explicit form for quasistatic
conditions in terms of the generalized forces: the gradients of density and
temperature, and the electric field. The full set of nonlocal transport
coefficients is given and discussed. Nonlocality of transport enhances electron
fluxes across magnetic field above the values given by strongly collisional
local theory. Dispersion and damping of magnetohydrodynamic waves in weakly
collisional plasmas is discussed. Nonlocal transport theory is applied to the
problem of temperature relaxation across the magnetic field in a laser hot
spot.Comment: 27 pages, 13 figure
Transient optical response of ultrafast nonequilibrium excited metals: Effects of electron-electron contribution to collisional absorption
Approaching energy coupling in laser-irradiated metals, we point out the role
of electron-electron collision as an efficient control factor for ultrafast
optical absorption. The high degree of laser-induced electron-ion
nonequilibrium drives a complex absorption pattern with consequences on the
transient optical properties. Consequently, high electronic temperatures
determine largely the collision frequency and establish a transition between
absorptive regimes in solid and plasma phases. In particular, taking into
account umklapp electron-electron collisions, we performed hydrodynamic
simulations of the laser-matter interaction to calculate laser energy
deposition during the electron-ion nonequilibrium stage and subsequent matter
transformation phases. We observe strong correlations between optical and
thermodynamic properties according to the experimental situations. A suitable
connection between solid and plasma regimes is chosen in accordance with models
that describe the behavior in extreme, asymptotic regimes. The proposed
approach describes as well situations encountered in pump-probe types of
experiments, where the state of matter is probed after initial excitation.
Comparison with experimental measurements shows simulation results which are
sufficiently accurate to interpret the observed material behavior. A numerical
probe is proposed to analyze the transient optical properties of matter exposed
to ultrashort pulsed laser irradiation at moderate and high intensities.
Various thermodynamic states are assigned to the observed optical variation.
Qualitative indications of the amount of energy coupled in the irradiated
targets are obtained.
Keywords: ultrafast absorption ; umklapp electron-electron collision ;
collisional absorption ; laser-matter interactio
Shielding of a moving test charge in a quantum plasma
The linearized potential of a moving test charge in a one-component fully
degenerate fermion plasma is studied using the Lindhard dielectric function.
The motion is found to greatly enhance the Friedel oscillations behind the
charge, especially for velocities larger than a half of the Fermi velocity, in
which case the asymptotic behavior of their amplitude changes from 1/r^3 to
1/r^2.5. In the absence of the quantum recoil (tunneling) the potential reduces
to a form similar to that in a classical Maxwellian plasma, with a difference
being that the plasma oscillations behind the charge at velocities larger than
the Fermi velocity are not Landau-damped.Comment: 9 pages, 11 figures. v3: Fixed typo, updated abstrac
- …